
276

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14

A Domain-Specific Language
for High-Level Parallelization

ABSTRACT

There are several ongoing research efforts in the High Performance Computing (HPC) domain that are
employing Domain-Specific Languages (DSLs) as the means of augmenting end-user productivity. A
discussion on some of the research efforts that can positively impact the end-user productivity without
negatively impacting the application performance is presented in this chapter. An overview of the process
of developing a DSL for specifying parallel computations, called High-Level Parallelization Language
(Hi-PaL), is presented along with the metrics for measuring its impact. A discussion on the future direc-
tions in which the DSL-based approaches can be applied in the HPC domain is also included.

INTRODUCTION

The High Performance Computing (HPC) disci-
pline has seen tremendous growth in the last decade
in terms of the power and scale of computing
platforms. By the next decade we might as well
be into the exascale computing era. One of the key
challenges on the path to exascale computing is to
develop programming environments that would
reduce the complexity associated with the process
of developing HPC applications, especially in the

light of heterogeneity in the computing platforms
and multiple levels of memory hierarchies.

There are plenty of parallel programming mod-
els that are already in widespread usage or have
the potential of being widely used - for example,
MPI (MPI Forum, 2009), OpenMP (OpenMP,
2011), OpenCL (OpenCL, 2011), TBB (Threaded
Building Blocks, 2011), Cilk Plus (Intel Cilk
Plus, 2011), Coarray Fortran (Mellor-Crummey
et al, 2009), and UPC (UPC, 2005). Each model
is suitable for a particular architecture and has

Ritu Arora
Texas Advanced Computing Center, USA

Purushotham Bangalore
University of Alabama at Birmingham, USA

Marjan Mernik
University of Maribor, Slovenia

DOI: 10.4018/978-1-4666-6042-7.ch014

277

A Domain-Specific Language for High-Level Parallelization

a learning curve associated with it. Due to the
rapidly evolving solution space for developing
HPC applications, the programmers are caught in
the “problem of plenty.” Moreover, the exascale
computing platforms are likely to use hybrid
programming models – probably MPI for com-
munication between different address spaces and
a shared memory programming paradigm for
communication within an address space. While
programming in a single parallel paradigm is quite
a challenge by itself (Arora et al, 2012), handling
hybrid programming models could put additional
burden on programmers.

With the increase in heterogeneity in the com-
puting platforms, it is also a challenge to write
portable applications that can run optimally on
a variety of architectures. It is a tedious task to
hand-tune the applications for every architecture
that they are meant to run on. High-level parallel
programming environments and abstractions that
can assist in the rapid development of scalable
and optimized HPC applications are, therefore,
required.

Domain-Specific Languages (DSLs) that are
written in a platform-independent manner can be
helpful in capturing the description of algorithms
at a high-level. The high-level description of an
algorithm can then be used to generate low-level
code for multiple HPC platforms (Sujeeth et al,
2011). The low-level code generated from the DSL
code can be optimized automatically on the basis
of the domain knowledge built in the compiler
and run-time system. DSLs, therefore, not only
have the potential of increasing the program-
mer productivity but can also help in squeezing
maximum performance from the applications via
domain-specific optimizations.

The key objectives of this chapter are to discuss
some active research works that aim at increasing
the productivity of HPC application developers
through the usage of DSLs and abstractions, pres-
ent a walk-through of the complete process of
developing a DSL, and discuss ways to measure
its impact.

BACKGROUND

DSLs are gradually gaining popularity in the HPC
domain because DSL-based approaches have
been shown to be helpful in developing parallel
applications and algorithms at a high-level of
abstraction. The low-level details related to the
development and deployment of HPC applica-
tions (viz. managing the communication between
processors, distribution of data on various proces-
sors, and load-balancing) can be hidden from the
programmers. A key advantage of the DSL-based
approaches is that the specifications of applica-
tions or algorithms need not be modified in the
event of a change in the underlying architecture.
Therefore, the application portability concerns are
assuaged. DSLs are also helpful in the separation
of concerns (Arora et al, 2011; Kiczales et al,
1997). Some of the DSLs that have the potential
of reducing the adoption barriers to HPC are
discussed in this section.

High-Level Parallelization Language (Hi-PaL)
is an application-domain neutral, declarative and
platform-independent DSL for expressing concur-
rency in existing sequential applications written in
C/C++ (Arora et al, 2011). The existing sequential
applications are analyzed for concurrency and
data-dependencies by the programmers who then
write Hi-PaL code to provide specifications about
what to parallelize and where (in the sequential
application). The Hi-PaL code is automatically
translated into low-level C/C++/MPI code and
woven into the existing applications with the
help of a Source-to-Source Compiler (SSC). It
is a multi-step process that involves generation
of grammar-specific (C/C++ grammar-specific)
rules so that the SSC can carry out automatic code
transformation (Arora et al, 2011; Czarnecki et
al, 2000). Without Hi-PaL, the end-users would
have to write their own grammar-specific rules
if they have to do automatic source-to-source
transformation, or they would have to manually
(and invasively) insert the C/C++/MPI code
into the existing sequential application to make

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/a-domain-specific-language-for-high-level-

parallelization/108725

Related Content

CSS and Children: Research Results and Future Directions
Kathryn D.R. Dragerand Joe Reichle (2010). Computer Synthesized Speech Technologies: Tools for Aiding

Impairment (pp. 130-147).

www.irma-international.org/chapter/css-children-research-results-future/40862

DSP Techniques for Sound Enhancement of Old Recordings
Paulo A.A. Esquefand Luiz W.P. Biscainho (2007). Advances in Audio and Speech Signal Processing:

Technologies and Applications (pp. 93-130).

www.irma-international.org/chapter/dsp-techniques-sound-enhancement-old/4684

Recognizing Prosody from the Lips: Is It Possible to Extract Prosodic Focus from Lip Features?
Marion Dohen, Hélène Loevenbruckand Harold Hill (2009). Visual Speech Recognition: Lip Segmentation

and Mapping (pp. 416-438).

www.irma-international.org/chapter/recognizing-prosody-lips/31076

A Tale of Transitions: The Challenges of Integrating Speech Synthesis in Aided Communication
Martine Smith, Janice Murray, Tetzchner Stephen vonand Pearl Langan (2010). Computer Synthesized

Speech Technologies: Tools for Aiding Impairment (pp. 234-256).

www.irma-international.org/chapter/tale-transitions-challenges-integrating-speech/40869

Data Hiding for Text and Binary Files
Hioki Hirohisa (2014). Computational Linguistics: Concepts, Methodologies, Tools, and Applications (pp.

1495-1514).

www.irma-international.org/chapter/data-hiding-for-text-and-binary-files/108790

http://www.igi-global.com/chapter/a-domain-specific-language-for-high-level-parallelization/108725
http://www.igi-global.com/chapter/a-domain-specific-language-for-high-level-parallelization/108725
http://www.irma-international.org/chapter/css-children-research-results-future/40862
http://www.irma-international.org/chapter/dsp-techniques-sound-enhancement-old/4684
http://www.irma-international.org/chapter/recognizing-prosody-lips/31076
http://www.irma-international.org/chapter/tale-transitions-challenges-integrating-speech/40869
http://www.irma-international.org/chapter/data-hiding-for-text-and-binary-files/108790

