
352

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 17

Design Patterns and Design
Principles for Internal

Domain-Specific Languages

ABSTRACT

Internal DSLs are a special kind of DSLs that use an existing programming language as their host. To
build them successfully, knowledge regarding how to modify the host language is essential. In this chapter,
the author contributes six DSL design principles and 21 DSL design patterns. DSL Design principles
provide guidelines that identify specific design goals to shape the syntax and semantic of a DSL. DSL
design patterns express proven knowledge about recurring DSL design challenges, their solution, and
their connection to each other – forming a rich vocabulary that developers can use to explain a DSL
design and share their knowledge. The chapter presents design patterns grouped into foundation patterns
(which provide the skeleton of the DSL consisting of objects and methods), notation patterns (which
address syntactic variations of host language expressions), and abstraction patterns (which provide
the domain-specific abstractions as extensions or even modifications of the host language semantics).

INTRODUCTION

Domain-Specific Languages (DSLs) are languages
specifically tailored to express the concepts and
notations of a domain by embodying suitable
abstractions and notations (van Deursen et al.,
2000). Using DSLs increases the productivity,
reduces errors, and allows to better focus on the
problem space (Czarnecki & Eisenecker, 2000;
Greenfield et al., 2004). DSLs are used for a wide
spectrum of domains, for example in telephone

services (Latry et al., 2007), for healthcare systems
(Munelly & Clarke, 2007), and for magnet tests at
the Large Hadron Collider at CERN (Arpaia et al.,
2009). This chapter focuses on one particular type
of DSLs. Internal DSLs are based on an existing
host language, they are built by carefully combin-
ing syntactic options of the host with well-scoped
semantic modifications using the host’s support
for metaprogramming. In the remainder of this
chapter, we mean internal DSLs whenever we
talk of DSLs.

Sebastian Günther
Vrije Universiteit Brussel, Belgium

DOI: 10.4018/978-1-4666-6042-7.ch017

353

Design Patterns and Design Principles for Internal Domain-Specific Languages
﻿

Considering existing open-source and research
DSLs, which can be especially found in languages
such as Ruby, Python, and Scala, we can study the
applied syntactic and semantic modifications of
the host. Although there are plenty examples of
DSLs, two problems are apparent. First, it remains
difficult for the individual developer to explain his
particular design because the relation of used host
language constructs and DSL design questions is
not clear. Second, the host language constructs are
language specific, so it is difficult to use designs
from one host language in another one. Therefore,
we think that only a common language to describe
the syntactic and semantic modifications, as well
as to understand how a modification affects the
characteristic of a DSL, allows developers to
communicate and plan DSL design. To achieve
this goal, developers need to understand design
principles and design patterns of DSLs.

Design principles are guidelines that provide
design goals to shape the syntax and semantic of
a DSL. The choice of principles influences how
a DSL is developed, which results in DSLs that
are distinguishable from each other and from host
language code. In related work, two limitations
become apparently. First, most case studies, in-
cluding recent ones, do not consider them (Groote
et al., 1995; Thibault et al., 1997; Barreto et al.,
2002; Agosta & Pelosi, 2007; Dinkelaker &
Mezini, 2008; Bennett et al., 2006; Havelund et
al., 2010). And second because those DSL case
studies that treat principles only define them, but
do not show how to actually achieve them (Atkins
et al., 1999; Oliveira et al., 2009; Bentley, 1986).

Design patterns are the essential way to provide
a vocabulary for communicating and planning
DSL designs. Although the implementation of a
DSL is host language specific, a careful analysis of
DSLs shows that there are language-independent
techniques to form the syntax and semantics of
a DSL. We refine these techniques to patterns,
which identify a common DSL design challenge
and a common solution that can be implemented
by using host language specific mechanisms.

Related work about DSL design patterns shows
two limitations. One the one hand, case studies
about internal DSL offer diverse techniques for
design and implementation, ranging from modi-
fications of a host language’s metaobject protocol
to object-oriented mechanisms (Agosta & Pelosi,
2007; Cannon & Wohlstadter, 2007; Cunningham,
2008; Dinkelaker & Mezini, 2008; Sloane, 2008).
However, the explained techniques are not gen-
eralized outside the context of their DSL, which
makes them hard to reuse for other case studies.
And on the other hand, most existing work about
DSL design patterns suggests very general pat-
terns (Haase, 2007; Mernik et al., 2005; Spinellis,
2001; Zdun & Strembeck, 2009), which are not
detailed enough for finer aspects of syntax and
semantic design.

To overcome the mentioned limitations, we
contribute with a set of 6 DSL design principles
and an explanation of 21 DSL design patterns. We
identify three design principles related to the syn-
tax of a DSL (notation, compression, and absorp-
tion) and three principles related to the semantics
(abstraction, generalization, and optimization).
The patterns are grouped into foundation patterns,
which provide the skeleton of the DSL consist-
ing of objects and methods, notation patterns,
which address syntactic variations by using host
language expressions, and abstraction patterns,
which provide the domain-specific abstractions
as extensions or even modifications of the host
language semantics. We show how to apply the
principles by identifying individual design goals
of the patterns – each goal giving the pattern a
unique way of being applied. The patterns have
been found and implemented in the context of
languages with an object-oriented core and strong
support for reflection, and therefore are especially
applicable in similar programming languages.
Furthermore, in the concluding section, we explain
how programming languages with another core
paradigm, for example functional languages, can
benefit from these patterns.

57 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/design-patterns-and-design-principles-for-

internal-domain-specific-languages/108729

Related Content

Security Solutions for Intelligent and Complex Systems
Stuart Armstrongand Roman V. Yampolskiy (2020). Natural Language Processing: Concepts,

Methodologies, Tools, and Applications (pp. 1232-1271).

www.irma-international.org/chapter/security-solutions-for-intelligent-and-complex-systems/239989

A Multimodal Solution to Blind Source Separation of Moving Sources
Syed Mohsen Naqvi, Yonggang Zhang, Miao Yuand Jonathon A. Chambers (2011). Machine Audition:

Principles, Algorithms and Systems (pp. 107-125).

www.irma-international.org/chapter/multimodal-solution-blind-source-separation/45483

Tools for the Automatic Generation of Ontology Documentation: A Task-Based Evaluation
Silvio Peroni, David Shottonand Fabio Vitali (2014). Computational Linguistics: Concepts, Methodologies,

Tools, and Applications (pp. 839-865).

www.irma-international.org/chapter/tools-for-the-automatic-generation-of-ontology-documentation/108754

Humanizing Vox Artificialis: The Role of Speech Synthesis in Augmentative and Alternative

Communication
D. Jeffery Higginbotham (2010). Computer Synthesized Speech Technologies: Tools for Aiding Impairment

(pp. 50-70).

www.irma-international.org/chapter/humanizing-vox-artificialis/40858

The Bengali Literary Collection of Rabindranath Tagore: Search and Study of Lexical Richness
Suprabhat Das, Anupam Basuand Pabitra Mitra (2013). Technical Challenges and Design Issues in Bangla

Language Processing (pp. 302-314).

www.irma-international.org/chapter/bengali-literary-collection-rabindranath-tagore/78480

http://www.igi-global.com/chapter/design-patterns-and-design-principles-for-internal-domain-specific-languages/108729
http://www.igi-global.com/chapter/design-patterns-and-design-principles-for-internal-domain-specific-languages/108729
http://www.irma-international.org/chapter/security-solutions-for-intelligent-and-complex-systems/239989
http://www.irma-international.org/chapter/multimodal-solution-blind-source-separation/45483
http://www.irma-international.org/chapter/tools-for-the-automatic-generation-of-ontology-documentation/108754
http://www.irma-international.org/chapter/humanizing-vox-artificialis/40858
http://www.irma-international.org/chapter/bengali-literary-collection-rabindranath-tagore/78480

