
816

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 40

Comparison between
Internal and External DSLs
via RubyTL and Gra2MoL

ABSTRACT

Domain Specific Languages (DSL) are becoming increasingly more important with the emergence of Model-
Driven paradigms. Most literature on DSLs is focused on describing particular languages, and there is still
a lack of works that compare different approaches or carry out empirical studies regarding the construction
or usage of DSLs. Several design choices must be made when building a DSL, but one important question
is whether the DSL will be external or internal, since this affects the other aspects of the language. This
chapter aims to provide developers confronting the internal-external dichotomy with guidance, through
a comparison of the RubyTL and Gra2MoL model transformations languages, which have been built as
an internal DSL and an external DSL, respectively. Both languages will first be introduced, and certain
implementation issues will be discussed. The two languages will then be compared, and the advantages
and disadvantages of each approach will be shown. Finally, some of the lessons learned will be presented.

INTRODUCTION

Software applications are normally written for a
particular activity area or problem domain. When
building software, developers have to confront the
semantic gap between the problem domain and the

conceptual framework provided by the software
language used to implement the solution. They must
express a solution based on domain concepts using
the constructs of a general purpose programming
language (GPL), such as Java or C#, which typi-
cally leads to repetitive and error prone code. This

Jesús Sánchez Cuadrado
Universidad Autónoma de Madrid, Spain

Javier Luis Cánovas Izquierdo
École des Mines de Nantes – INRIA – LINA, France

Jesús García Molina
Universidad de Murcia, Spain

DOI: 10.4018/978-1-4666-6042-7.ch040

817

Comparison between Internal and External DSLs via RubyTL and Gra2MoL

encoding task is considered to be “not very creative,
and more or less waste or time,” and existing code
maintenance is difficult (Dmitriev, 2004). Since
the early days of programming, domain-specific
languages (DSLs) have therefore been created as
an alternative to using GPLs.

DSLs allow solutions to be specified by using
concepts of the problem domain, thus reducing the
semantic gap between them, and thereby improv-
ing productivity and facilitating maintenance, as a
number of studies and case studies report (Weiss
& Lai, 1999; Ledeczi, Bakay, Maroti, Volgyesi,
Nordstrom, Sprinkle & Karsai, 2001; Kelly &
Tolvanen, 2008; Kosar, Mernik & Carver, 2011).
DSLs are not new (Bentley, 1986), for instance
SQL, Pic or Make are well-known examples, but
the interest in them has increased considerably
in the last decade with the emergence of model-
driven development paradigms (“MDA Guide,”
2001; Kelly & Tolvanen, 2008; Greenfield, Short,
Cook & Kent, 2004; Voelter, 2008), which provide
systematic frameworks for the building and use of
DSLs, their core being meta-modeling.

Model-driven paradigms are based on three
basic principles. Firstly, a software application is
partially (or totally) described using models, which
are high-level abstract specifications, rather than
using solely a GPL. Secondly, these models are
expressed with DSLs which are created by apply-
ing meta-modeling (i.e. the DSL abstract syntax is
represented as a meta-model). Thirdly, automation
is achieved by means of model transformations
which are able to directly or indirectly transform
models (e.g., DSL programs) into the final code of
the application by creating intermediate models.
Two kinds of model transformation languages are
therefore needed (Czarnecki & Helsen, 2006):
model-to-model transformation languages, which
allow us to express how models are mapped into
models, and model-to-text transformation lan-
guages, which allow us to express how models
are mapped into text (e.g., GPL code). Model-
based techniques can also be applied in software
modernization tasks, and a third kind of model

transformation with which to extract models from
legacy software artifacts (e.g., GPL code or a XML
document) is then involved, which is normally
called text-to-model transformation.

A DSL normally consists of three basic ele-
ments: abstract syntax, concrete syntax, and
semantics. The abstract syntax expresses the
construction rules of the DSL without notational
details, that is, the constructs of the DSL and their
relationships. Meta-modeling provides a good
foundation for this component, but other formal-
isms such as BNF have also been used over the
years. The concrete syntax defines the notation
of the DSL, which is normally textual or graphi-
cal (or a combination of both). There are several
approaches for the semantics (Kleppe, 2008), but
it is typically provided by building a translator to
another language (i.e., a compiler) or an interpreter.

Several techniques have been proposed for the
implementation of both textual DSLs (Fowler,
2010; Mernik, Heering & Sloane, 2005) and
graphical DSLs (Kelly & Tolvanen, 2008; Cook,
Jones, Kent & Wills, 2007). In this work we focus
on textual DSLs, and particularly consider two
kinds or styles according to the implementation
technique used: external DSLs and internal DSLs.
An external DSL is typically built by creating a
parser that recognizes the language’s concrete
syntax, and then developing an execution infra-
structure if necessary. An internal DSL, however, is
implemented on top of a general purpose language
(the host language), and reuses its infrastructure
(e.g., concrete syntax, type system and run-time
system), which is extended with domain specific
constructs. The DSL is therefore defined using
the abstractions provided by the host language
itself. For instance, in an object-oriented language,
method calls can be used to represent keywords
of the language. Languages with a non-intrusive
syntax (e.g., LISP, Smalltalk or Ruby) are well
suited for use as host languages.

A number of design decisions must be made
when building a DSL, such as those related to its
concrete syntax, how the language semantics is

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/comparison-between-internal-and-external-dsls-

via-rubytl-and-gra2mol/108753

Related Content

A Geometric Dynamic Temporal Reasoning Method with Tags for Cognitive Systems
Rui Xu, Zhaoyu Li, Pingyuan Cui, Shengying Zhuand Ai Gao (2020). Natural Language Processing:

Concepts, Methodologies, Tools, and Applications (pp. 248-265).

www.irma-international.org/chapter/a-geometric-dynamic-temporal-reasoning-method-with-tags-for-cognitive-

systems/239939

Logs Analysis of Adapted Pedagogical Scenarios Generated by a Simulation Serious Game

Architecture
Sophie Callies, Mathieu Gravel, Eric Beaudryand Josianne Basque (2020). Natural Language Processing:

Concepts, Methodologies, Tools, and Applications (pp. 1178-1198).

www.irma-international.org/chapter/logs-analysis-of-adapted-pedagogical-scenarios-generated-by-a-simulation-serious-

game-architecture/239985

Multi-Channel Source Separation: Overview and Comparison of Mask-based and Linear

Separation Algorithms
Nilesh Madhuand André Gückel (2011). Machine Audition: Principles, Algorithms and Systems (pp. 207-

245).

www.irma-international.org/chapter/multi-channel-source-separation/45487

Second Language Learners' Spoken Discourse: Practice and Corrective Feedback through

Automatic Speech Recognition
Catia Cucchiariniand Helmer Strik (2014). Computational Linguistics: Concepts, Methodologies, Tools, and

Applications (pp. 618-639).

www.irma-international.org/chapter/second-language-learners-spoken-discourse/108742

Some Issues on Capturing the Meaning of Negated Statements
Eduardo Blancoand Dan Moldovan (2012). Cross-Disciplinary Advances in Applied Natural Language

Processing: Issues and Approaches (pp. 103-113).

www.irma-international.org/chapter/some-issues-capturing-meaning-negated/64583

http://www.igi-global.com/chapter/comparison-between-internal-and-external-dsls-via-rubytl-and-gra2mol/108753
http://www.igi-global.com/chapter/comparison-between-internal-and-external-dsls-via-rubytl-and-gra2mol/108753
http://www.irma-international.org/chapter/a-geometric-dynamic-temporal-reasoning-method-with-tags-for-cognitive-systems/239939
http://www.irma-international.org/chapter/a-geometric-dynamic-temporal-reasoning-method-with-tags-for-cognitive-systems/239939
http://www.irma-international.org/chapter/logs-analysis-of-adapted-pedagogical-scenarios-generated-by-a-simulation-serious-game-architecture/239985
http://www.irma-international.org/chapter/logs-analysis-of-adapted-pedagogical-scenarios-generated-by-a-simulation-serious-game-architecture/239985
http://www.irma-international.org/chapter/multi-channel-source-separation/45487
http://www.irma-international.org/chapter/second-language-learners-spoken-discourse/108742
http://www.irma-international.org/chapter/some-issues-capturing-meaning-negated/64583

