
1401

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 69

DOI: 10.4018/978-1-4666-6042-7.ch069

Abstraction of Computer
Language Patterns:
The Inference of Textual

Notation for a DSL

ABSTRACT

In general, designing a domain-specific language (DSL) is a complicated process, requiring the coop-
eration of experts from both application domain and computer language development areas. One of the
problems that may occur is a communication gap between a domain expert and a language engineer.
Since domain experts are usually non-technical people, it might be difficult for them to express require-
ments on a DSL notation in a technical manner. Another compelling problem is that even though the
majority of DSLs share the same notation style for representing the common language constructs, a
language engineer has to formulate the specification for these constructs repeatedly for each new DSL
being designed. The authors propose an innovative concept of computer language patterns to capture the
well-known recurring notation style often seen in many computer languages. To address the communica-
tion problem, they aim for the way of proposing a DSL notation by providing program examples as they
would have been written in a desired DSL. As a combination of these two ideas, the chapter presents a
method for example-driven DSL notation specification (EDNS), which utilizes computer language pat-
terns for semi-automated inference of a DSL notation specification from the provided program examples.

Jaroslav Porubän
Technical University of Košice, Slovakia

Ján Kollár
Technical University of Košice, Slovakia

Miroslav Sabo
Technical University of Košice, Slovakia

1402

Abstraction of Computer Language Patterns
﻿

INTRODUCTION

Designing computer languages is hard, and de-
signing domain-specific computer languages is
even harder. The notation of a language must be
defined to suit a specific domain but at the same
time it has to be processable by a computer. What
we often see in the notation of various computer
languages is the recurrence of some particular
patterns. These notation patterns are used to rep-
resent general language constructs found in many
computer languages. They help users understand
programs written in such languages by basing the
notation on their prior experience. People who
are familiar with such patterns are able to im-
mediately comprehend a rough idea of a program
without having to learn the language first. Since
the human usability is one of the main features of
DSLs, the notation of these languages is naturally
full of such recurring language patterns. From the
perspective of the language design, these patterns
must be identified and translated into the grammar
rules repeatedly for each new DSL. Although for
experienced language engineers, this is a simple
yet menial and repetitive task, for new ones it
may present a serious assignment. To address the
problems of both cases we propose to capture the
knowledge of a language engineer as computer
language patterns. Each language pattern system-
atically names, explains and captures the recur-
ring notation and provides the means to reflect
this notation in a language design. Our ultimate
goal is to capture the knowledge of the language
design in a form that people can use effectively.

MOTIVATION

Scenario 1: Communication
with Domain Experts

Anna works as a developer for a global market
company. Until now, the goods between stores
and warehouses have been ordered and delivered

according to handwritten enquiries. To improve
this process, the company decided to go for au-
tomation. However, as the style used for writing
the enquiries has been retained over the years
and many employees are used to it, the company
wants to keep it in the electronic version as well.

The task that Anna has been assigned is to
develop a language with the well-known struc-
ture and notation defined by existing enquiries.
The approach to specifying a language notation
by providing example documents is also very
convenient even if documents do not exist and
have to be created at first. This is very common
in development of vertical DSLs1 since for the
non-technical domain experts, writing down the
examples is often the best way of communicating
their thoughts on the look and feel of a language
being designed.

Scenario 2: Analyzers of
Generated Textual Output

An SMS or email notification is a service com-
monly provided by many companies. Bob has
subscribed to an online auctioning site and now
he receives emails every time some important
events happen (e.g. somebody bids on an item
he is interested in). To increase his chances in
the auction, he decided to track the biddings of
each participant and analyze them for predictions
of their future behavior. Since the only source of
such information is emails with well formatted
messages, Bob has to extract the desired data from
them. Messages can be of a variable length and
different content depending on the type and num-
ber of events they report therefore using regular
expressions would not suffice for this purpose.

This scenario describes a situation where a
parser for existing formatted documents has to
be created. Software systems generate a lot of
textual output, either as a main product of their
execution or for other purposes such as logging or
reporting. If the output is intended for information
transfer and further processing by another system,

19 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/abstraction-of-computer-language-

patterns/108784

Related Content

Software Language Engineering with XMF and XModeler
Tony Clarkand James Willans (2014). Computational Linguistics: Concepts, Methodologies, Tools, and

Applications (pp. 866-896).

www.irma-international.org/chapter/software-language-engineering-with-xmf-and-xmodeler/108755

Kansei Evaluation of Product Recommendation Based on a Partial Comparison Process
Jing-Zhong Jinand Yoshiteru Nakamori (2014). Computational Linguistics: Concepts, Methodologies, Tools,

and Applications (pp. 1480-1494).

www.irma-international.org/chapter/kansei-evaluation-of-product-recommendation-based-on-a-partial-comparison-

process/108789

From Citizens to Decision-Makers: A Natural Language Processing Approach in Citizens'

Participation
Eya Boukchina, Sehl Mellouliand Emna Menif (2020). Natural Language Processing: Concepts,

Methodologies, Tools, and Applications (pp. 1162-1177).

www.irma-international.org/chapter/from-citizens-to-decision-makers/239984

Digital Speech Technology: An Overview
H. S. Venkatagiri (2010). Computer Synthesized Speech Technologies: Tools for Aiding Impairment (pp.

28-49).

www.irma-international.org/chapter/digital-speech-technology/40857

Question Answering and Generation
Arthur C. Graesser, Vasile Rus, Zhiqiang Caiand Xiangen Hu (2012). Applied Natural Language

Processing: Identification, Investigation and Resolution (pp. 1-16).

www.irma-international.org/chapter/question-answering-generation/61039

http://www.igi-global.com/chapter/abstraction-of-computer-language-patterns/108784
http://www.igi-global.com/chapter/abstraction-of-computer-language-patterns/108784
http://www.irma-international.org/chapter/software-language-engineering-with-xmf-and-xmodeler/108755
http://www.irma-international.org/chapter/kansei-evaluation-of-product-recommendation-based-on-a-partial-comparison-process/108789
http://www.irma-international.org/chapter/kansei-evaluation-of-product-recommendation-based-on-a-partial-comparison-process/108789
http://www.irma-international.org/chapter/from-citizens-to-decision-makers/239984
http://www.irma-international.org/chapter/digital-speech-technology/40857
http://www.irma-international.org/chapter/question-answering-generation/61039

