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INTRODUCTION

Several classes of computational and statistical methods 
for data mining are available. Each class can be param-
eterised so that models within the class differ in terms 
of such parameters (See  for instance Giudici, 2003, 
Hastie et al., 2001, Han and Kamber, 200, Hand et al, 
2001 and Witten and Frank, 1999). For example the 
class of linear regression models, which differ in the 
number of explanatory variables; the class of bayesian 
networks, which differ in the number of conditional 
dependencies (links in the graph); the class of tree 
models, which differ in the number of leaves and the 
class multi-layer perceptrons which differ in terms of 
the number of hidden strata and nodes. Once a class of 
models has been established the problem is to choose 
the “best” model from it. 

BACKGROUND

A rigorous method to compare models is statistical 
hypothesis testing. With this in mind one can adopt a 
sequential procedure that allows a model to be chosen 
through a sequence of pairwise test comparisons. How-
ever, we point out that these procedures are generally not 
applicable, in particular to computational data mining 
models, which do not necessarily have an underlying 
probabilistic model and, therefore, do not allow the 
application of statistical hypotheses testing theory. 
Furthermore, it often happens that for a data problem 
it is possible to use more than one type of model class, 
with different underlying probabilistic assumptions. 
For example, for a problem of predictive classification 
it is possible to use both logistic regression and tree 
models as well as neural networks.

We also point out that model specification and, 
therefore, model choice is determined by the type of 
variables used. These variables can be the result of 

transformations or of the elimination of observations, 
following an exploratory analysis. We then need to 
compare models based on different sets of variables 
present at the start. For example, how do we compare a 
linear model with the original explanatory variables with 
one with a set of transformed explanatory variables?

The previous considerations suggest the need for 
a systematic study of the methods for comparison and 
evaluation of data mining models.

MAIN THRUST OF THE CHAPTER

Comparison criteria for data mining models can be 
classified schematically into: criteria based on statis-
tical tests, based on scoring functions, computational 
criteria, bayesian criteria and business criteria.

Criteria Based on Statistical Tests

The first are based on the theory of statistical hypothesis 
testing and, therefore, there is a lot of detailed literature 
related to this topic. See for example a text about statisti-
cal inference, such as  Mood, Graybill and Boes (1991) 
and  Bickel and Doksum (1977). A statistical model 
can be specified by a discrete probability function or 
by a probability density function, f(x). Such model is 
usually left unspecified,  up to unknown quantities that 
have to be estimated on the basis of the data at hand. 
Typically,  the observed sample it is not sufficient to 
reconstruct each detail of  f(x), but can indeed be used 
to approximate f(x) with a certain accuracy. Often a 
density function is parametric so that it is defined by 
a vector of parameters Θ=(θ1 ,…,θI ), such that each 
value θ of Θ corresponds to a particular density func-
tion, pθ(x). In order to measure the accuracy of a para-
metric model, one can resort to the notion of distance 
between a model f, which underlies the data, and an 
approximating model g (see, for instance, Zucchini, 
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2000). Notable examples of distance functions are, 
for categorical variables: the entropic distance, which  
describes the proportional reduction of the heterogene-
ity of the dependent variable; the chi-squared distance, 
based on the distance from the case of independence; 
the 0-1 distance, which leads to misclassification rates. 
For quantitative variables, the typical choice is the Eu-
clidean distance, representing the distance between two 
vectors in a Cartesian space. Another possible choice 
is the uniform distance, applied when nonparametric 
models are being used. 

Any of the previous distances can be employed 
to define the notion of discrepancy of an statistical  
model.  The discrepancy of a model, g, can be obtained 
comparing the  unknown probabilistic model, f, and the 
best parametric statistical model. Since f is unknown, 
closeness can be measured with respect to a sample 
estimate of the unknown density f.  A common choice 
of discrepancy function is the  Kullback-Leibler diver-
gence, that  can be applied to any type of observations. 
In such context, the best model can be interpreted as 
that with a minimal loss of information from the true 
unknown distribution.

It can be shown that the statistical tests used for 
model comparison are generally based on estimators 
of the total Kullback-Leibler discrepancy; the most 
used is the log-likelihood score. Statistical hypothesis 
testing is based on subsequent pairwise comparisons of 
log-likelihood scores of alternative models. Hypothesis 
testing allows to derive a threshold below which the 
difference between two models is not significant and, 
therefore, the simpler models can be chosen. 

Therefore, with statistical tests it is possible make 
an accurate choice among the models. The defect of 
this procedure is that it allows only a partial ordering 
of models, requiring a comparison between model pairs 
and, therefore, with a large number of alternatives it 
is necessary to make heuristic choices regarding the 
comparison strategy (such as choosing among the 
forward, backward and stepwise criteria, whose results 
may diverge). Furthermore, a probabilistic model 
must be assumed to hold, and this may not always be 
possible.

Criteria Based on Scoring Functions

A less structured approach has been developed in the 
field of information theory, giving rise to criteria based 
on score functions. These criteria give each model a 

score, which puts them into some kind of complete 
order. We have seen how the Kullback-Leibler discrep-
ancy can be used to derive statistical tests to compare 
models. In many cases, however, a formal test cannot 
be derived. For this reason, it is important to develop 
scoring functions, that attach a score to each model. 
The Kullback-Leibler discrepancy estimator is an 
example of such a scoring function that, for complex 
models, can be often be approximated asymptotically. 
A problem with the Kullback-Leibler score is that it 
depends on the complexity of a model as described, 
for instance, by the number of parameters.  It is thus 
necessary to employ score functions that penalise 
model complexity. 

The most important of such functions is the AIC 
(Akaike Information Criterion, Akaike, 1974). From 
its definition notice that the AIC score essentially pe-
nalises the loglikelihood score with a term that increases 
linearly with model complexity.  The AIC criterion is 
based on the implicit assumption that q remains con-
stant when the size of the sample increases. However 
this assumption is not always valid and therefore the 
AIC criterion does not lead to a consistent estimate of 
the dimension of the unknown model. An alternative, 
and consistent, scoring function is the BIC criterion 
(Bayesian Information Criterion), also called SBC, 
formulated by Schwarz (1978). As can be seen from 
its definition the BIC differs from the AIC only in the 
second part which now also depends on the sample 
size n. Compared to the AIC, when n increases the BIC 
favours simpler models. As n gets large, the first term 
(linear in n) will dominate the second term (logarithmic 
in n). This corresponds to the fact that, for a large n, 
the variance term in the mean squared error expression 
tends to be negligible. We also point out that, despite 
the superficial similarity between the AIC and the BIC, 
the first is usually justified by resorting to classical 
asymptotic arguments, while the second by appealing 
to the Bayesian framework.

To conclude, the scoring function criteria for se-
lecting models are easy to calculate and lead to a total 
ordering of the models. From most statistical packages 
we can get the AIC and BIC scores for all the models 
considered. A further advantage of these criteria is that 
they can be used also to compare non-nested models 
and, more generally, models that do not belong to the 
same class (for instance a probabilistic neural network 
and a linear regression model). 
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