Formal Concept Analysis Based Clustering

Jamil M. Saquer

Southwest Missouri State University, USA

INTRODUCTION

Formal concept analysis (FCA) is a branch of applied mathematics with roots in lattice theory (Wille, 1982; Ganter & Wille, 1999). It deals with the notion of a concept in a given universe, which it calls context. For example, consider the context of transactions at a grocery store where each transaction consists of the items bought together. A concept here is a pair of two sets (A, B). A is the set of transactions that contain all the items in B and B is the set of items common to all the transactions in A. A successful area of application for FCA has been data mining. In particular, techniques from FCA have been successfully used in the association mining problem and in clustering (Kryszkiewicz, 1998; Saguer, 2003; Zaki & Hsiao, 2002). In this article, we review the basic notions of FCA and show how they can be used in clustering.

BACKGROUND

A fundamental notion in FCA is that of a context, which is defined as a triple (G, M, I), where G is a set

Leech

1

of objects, M is a set of features (or attributes), and I is a binary relation between G and M. For object g and feature m, gIm if and only if g possesses the feature m. An example of a context is given in *Table 1*, where an "X" is placed in the ith row and jth column to indicate that the object in row i possesses the feature in column j.

The set of features common to a set of objects A is denoted by $\beta(A)$ and is defined as $\{m \in M \mid gIm \ "g \in A\}$. Similarly, the set of objects possessing all the features in a set of features B is denoted by $\alpha(B)$ and is given by $\{g \in G \mid gIm \ \forall m \in B\}$. The operators α and β satisfy the assertions given in the following lemma.

Lemma 1 (Wille, 1982): Let (G, M, I) be a context. Then the following assertions hold:

- 1. $A_1 \subseteq A_2$ implies $\beta(A_2) \subseteq \beta(A_1)$ for every $A_1, A_2 \subseteq G$, and $B_1 \subseteq B_2$ implies $\alpha(B_2) \subseteq \alpha(B_1)$ for every $B_1, B_2 \subseteq M$.
- 2. A $\subseteq \alpha(\beta(A) \text{ and } A = \beta(\alpha(\beta(A)) \text{ for all } A \subseteq G,$ and B $\subseteq \beta(\alpha((B)) \text{ and } B = \alpha(\beta(\alpha(B))) \text{ for all } B \subseteq M.$

h

g

Х

Table 1. A context excerpted from (Ganter, and Wille, 1999, p. 18). a = needs water to live; b = lives in water; c = lives on land; d = needs chlorophyll; e = two seeds leaf; f = one seed leaf; g = can move around; h = has limbs; i = suckles its offsprings.

d

e

2	Bream	X	X					X	X	
3	Frog	X	X	X				Х	Х	
4	Dog	X		X				Х	Х	X
5	Spike-weed	X	X		Х		Х			
6	Reed	X	Х	Х	X		X			
7	Bean	X		X	Х	Х				
8	Maize	X		Х	X		Х			

с

а

Х

b

Х

A formal concept in the context (G, M, I) is defined as a pair (A, B) where A \subseteq G, B \subseteq M, β (A) = B, and $\alpha(B) = A$. A is called the extent of the formal concept and B is called its intent. For example, the pair (A, B) where $A = \{2, 3, 4\}$ and $B = \{a, g, h\}$ is a formal concept in the context given in Table 1. A subconcept/ superconcept order relation on concepts is as follows: $(A_1, B_1) \le (A_2, B_2)$ iff $A_1 \subseteq A_2$ (or equivalently, iff B_2 \subseteq B₁). The fundamental theorem of FCA states that the set of all concepts on a given context is a complete lattice, called the concept lattice (Ganter & Wille, 1999). Concept lattices are drawn using Hasse diagrams, where concepts are represented as nodes. An edge is drawn between concepts C_1 and C_2 iff $C_1 \le C_2$ and there is no concept C₃ such that $C_1 \le C_3 \le C_2$. The concept lattice for the context in Table 1 is given in Figure 1.

A less condensed representation of a concept lattice is possible using reduced labeling (Ganter & Wille, 1999). Figure 2 shows the concept lattice in Figure 1 with reduced labeling. It is easier to see the relationships and similarities among objects when reduced labeling is used. The extent of a concept C in *Figure* 2 consists of the objects at C and the objects at the concepts that can be reached from C going downward following descending paths towards the bottom concept. Similarly, the intent of C consists of the features at C and the features at the concepts that can be reached from C going upwards following ascending paths to the top concept.

Consider the context presented in *Table 1*. Let B = {a, f}. Then, $\alpha(B) = \{5, 6, 8\}$, and $\beta(\alpha(B)) = b(\{5, 6, 8\}) = \{a, d, f\} \neq \{a, f\}$; therefore, in general, $\beta(\alpha(B)) \neq B$. A set of features B that satisfies the condition $b(\alpha(B)) = B$ is called a closed feature set. Intuitively, a closed feature set is a maximal set of features shared by a set of objects. It is easy to show that intents of the concepts of a concept lattice are all closed feature sets.

The support of a set of features B is defined as the percentage of objects that possess every feature in B. That is, support(B) = $|\alpha(B)|/|G|$, where |B| is the

Figure 1. Concept lattice for the context in Table 1

Figure 2. Concept lattice for the context in Table 1 with reduced labeling

4 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/formal-concept-analysis-based-clustering/10926

Related Content

Context-Sensitive Attribute Evaluation

Marko Robnik-Šikonja (2009). *Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 328-332).* www.irma-international.org/chapter/context-sensitive-attribute-evaluation/10840

Cluster Analysis for Outlier Detection

Frank Klawonnand Frank Rehm (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 214-218).

www.irma-international.org/chapter/cluster-analysis-outlier-detection/10823

Techniques for Weighted Clustering Ensembles

Carlotta Domeniconi (2009). *Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1916-1922).* www.irma-international.org/chapter/techniques-weighted-clustering-ensembles/11081

Promoting Critical Thinking Disposition Through Virtual Reality Serious Games

Su Jiayuanand Jingru Zhang (2024). *Embracing Cutting-Edge Technology in Modern Educational Settings (pp. 93-118).*

www.irma-international.org/chapter/promoting-critical-thinking-disposition-through-virtual-reality-serious-games/336192

Semantic Multimedia Content Retrieval and Filtering

Chrisa Tsinaraki (2009). *Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1771-1778).* www.irma-international.org/chapter/semantic-multimedia-content-retrieval-filtering/11058