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INTRODUCTION

Genetic programming (GP) is a sub-area of evolution-
ary computation first explored by John Koza (1992) 
and independently developed by Nichael Lynn Cramer 
(1985).  It is a method for producing computer programs 
through adaptation according to a user-defined fitness 
criterion, or objective function.

Like genetic algorithms, GP uses a representation 
related to some computational model, but in GP, fitness is 
tied to task performance by specific program semantics.  
Instead of strings or permutations, genetic programs 
are most commonly represented as variable-sized ex-
pression trees in imperative or functional programming 
languages, as grammars (O’Neill & Ryan, 2001), or 
as circuits (Koza et al., 1999).  GP uses patterns from 
biological evolution to evolve programs:

• Crossover: Exchange of genetic material such 
as program subtrees or grammatical rules

• Selection: The application of the fitness criterion 
to choose which individuals from a population 
will go on to reproduce

• Replication: The propagation of individuals from 
one generation to the next

• Mutation:  The structural modification of indi-
viduals 

To work effectively, GP requires an appropriate set 
of program operators, variables, and constants.  Fitness 
in GP is typically evaluated over fitness cases.  In data 
mining, this usually means training and validation data, 
but cases can also be generated dynamically using a 
simulator or directly sampled from a real-world problem 
solving environment.  GP uses evaluation over these 
cases to measure performance over the required task, 
according to the given fitness criterion.

BACKGROUND

Although Cramer (1985) first described the use of 
crossover, selection, and mutation and tree representa-
tions for using genetic algorithms to generate programs, 
Koza is indisputably the field’s most prolific and per-
suasive author.  (Wikipedia, 2007)  In four books since 
1992, Koza et al. have described GP-based solutions 
to numerous toy problems and several important real-
world problems.

 State of the field: To date, GPs have been suc-
cessfully applied to a few significant problems in 
machine learning and data mining, most notably 
symbolic regression and feature construction.  
The method is very computationally intensive, 
however, and it is still an open question in cur-
rent research whether simpler methods can be 
used instead.  These include supervised inductive 
learning, deterministic optimization, randomized 
approximation using non-evolutionary algorithms 
(such as Markov chain Monte Carlo approaches), 
or genetic algorithms and evolutionary algo-
rithms. It is postulated by GP researchers that the 
adaptability of GPs to structural, functional, and 
structure-generating solutions of unknown form 
makes them more amenable to solving complex 
problems.  Specifically, Koza et al. demonstrate 
(1999, 2003) that in many domains, GP is capable 
of “human-competitive” automated discovery of 
concepts deemed to be innovative through techni-
cal review such as patent evaluation.

MAIN THRUST OF THE CHAPTER

The general strengths of genetic programs lie in their 
ability to produce solutions of variable functional form, 
reuse partial solutions, solve multi-criterion optimiza-
tion problems, and explore a large search space of 
solutions in parallel.  Modern GP systems are also able 
to produce structured, object-oriented, and functional 
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programming solutions involving recursion or iteration, 
subtyping, and higher-order functions.

A more specific advantage of GPs are their ability 
to represent procedural, generative solutions to pattern 
recognition and machine learning problems.  Examples 
of this include image compression and reconstruction 
(Koza, 1992) and several of the recent applications 
surveyed below.

GP Methodology

GP in pattern classification departs from traditional 
supervised inductive learning in that it evolves solutions 
whose functional form is not determined in advance, 
and in some cases can be theoretically arbitrary.   Koza 
(1992, 1994) developed GPs for several pattern repro-
duction problems such as the multiplexer and symbolic 
regression problems.

Since then, there has been continuing work on 
inductive GP for pattern classification (Kishore et al., 
2000), prediction (Brameier & Banzhaf, 2001), and 
numerical curve-fitting (Nikolaev & Iba, 2001, IEEE 
Trans. Evol. Comp.).  GP has been used to boost per-
formance in learning polynomial functions (Nikolaev 
& Iba, 2001, GP & Evol. Machines).  More recent work 
on tree-based multi-crossover schemes has produced 
positive results in GP-based design of classification 
functions (Muni et al., 2004).

While early work in GP for data mining and 
knowledge discovery in databases (KDD) focused on 
specific fitness measures related to classification and 
prediction (Eggermont et al., 1999), more recent work 
has sought to use GP to implement search behaviors 
and procedural solutions.  Among the methodologies 
related to GP are swarm intelligence approaches such 
as ant colony optimization (ACO) and particle swarm 
optimization (PSO), which seek to evolve solutions 
through fine-grained simulation of many simple agents. 
(Azzag et al., 2007; Holden & Freitas, 2007; Tsang & 
Kwong, 2007)

Applications in Data Mining and 
Warehousing

The domains within data mining and warehousing 
where GP has been most successfully applied in recent 

research include classification (Raymer et al., 1996; 
Connolly, 2004a; Langdon & Buxton, 2004; Langdon 
& Barrett, 2005; Holden & Freitas, 2007), prediction 
(Kaboudan, 2000), and search (Burke & Kendall, 
2005).  Higher-level tasks such as decision support are 
often reduced to classification or prediction, while the 
symbolic representation (S-expressions) used by GP 
admits query optimization.

GP for Control of Inductive Bias, Feature 
Construction, and Feature Extraction

GP approaches to inductive learning face the general 
problem of optimizing inductive bias: the preference for 
groups of hypotheses over others on bases other than 
pure consistency with training data or other fitness cases.   
Krawiec (2002) approaches this problem by using GP to 
preserve useful components of representation (features) 
during an evolutionary run, validating them using the 
classification data, and reusing them in subsequent 
generations.  This technique is related to the wrapper 
approach to KDD, where validation data is held out 
and used to select examples for supervised learning, 
or to construct or select variables given as input to the 
learning system.  Because GP is a generative problem 
solving approach, feature construction in GP tends to 
involve production of new variable definitions rather 
than merely selecting a subset.

Evolving dimensionally-correct equations on the 
basis of data is another area where GP has been applied. 
Keijzer & Babovic (2002) provide a study of how GP 
formulates its declarative bias and preferential (search-
based) bias.  In this and related work, it is shown that 
proper units of measurement (strong typing) approach 
can capture declarative bias towards correct equations, 
whereas type coercion can implement even better 
preferential bias.

Grammar-Based GP for Data Mining

Not all GP-based approaches use expression tree-based 
representations, nor functional program interpreta-
tion as the computational model.  Wong and Leung 
(2000) survey data mining using grammars and formal 
languages.  This general approach has been shown ef-
fective for some natural language learning problems, 
and extension of the approach to procedural informa-
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