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INTRODUCTION

At present there is a wide range of data mining al-
gorithms available to researchers and practitioners 
(Witten & Frank, 2005; Tan et al., 2006). Despite the 
great diversity of these algorithms, virtually all of them 
share one feature: they have been manually designed. 
As a result, current data mining algorithms in general 
incorporate human biases and preconceptions in their 
designs.

This article proposes an alternative approach to the 
design of data mining algorithms, namely the automatic 
creation of data mining algorithms by means of Ge-
netic Programming (GP) (Pappa & Freitas, 2006). In 
essence, GP is a type of Evolutionary Algorithm – i.e., 
a search algorithm inspired by the Darwinian process 
of natural selection – that evolves computer programs 
or executable structures.

This approach opens new avenues for research, 
providing the means to design novel data mining 
algorithms that are less limited by human biases and 
preconceptions, and so offer the potential to discover 
new kinds of patterns (or knowledge) to the user. It 
also offers an interesting opportunity for the automatic 
creation of data mining algorithms tailored to the data 
being mined.

BACKGROUND

An Evolutionary Algorithm (EA) is a computational 
problem-solving method inspired by the process 
of natural selection. In essence, an EA maintains a 
population of “individuals”, where each individual 
represents a candidate solution to the target problem. 
EAs are iterative generate-and-test procedures, where at 
each “generation” (iteration) a population of individu-

als is generated and each individual has its “fitness” 
computed. The fitness of an individual is a measure 
of the quality of its corresponding candidate solution. 
The higher the fitness of an individual, the higher the 
probability that the individual will be selected to be a 
“parent” individual. Certain operations (often “cross-
over” and/or “mutation” operations inspired by their 
natural counterparts) are applied to the selected parent 
individuals in order to produce “children” individuals. 
The important point is that, since the children are in 
general produced from parents selected based on fitness, 
the children (new candidate solutions) tend to inherit 
parts of the good solutions of the previous generation, 
and the population as a whole gradually evolves to fitter 
and fitter individuals (better and better solutions to the 
target problem). For a comprehensive review of EAs in 
general the reader is referred to (De Jong, 2006; Eiben 
& Smith, 2003), and a comprehensive review of EAs 
for data mining can be found in (Freitas, 2002).

The basic principle of EAs – i.e., artificial evolu-
tion of candidate solutions, where parent solutions are 
selected based on their fitness in order to create new 
children solutions – still holds in Genetic Program-
ming (GP). The main distinguishing feature of GP 
– by comparison with other types of EA – is that the 
candidate solutions represented by GP individuals are 
(or at least should be) computer programs or execut-
able structures. GP has been an active research field 
for about 15 years (Koza, 1992; Banzhaf et al., 1998; 
Langdon & Poli, 2002; Koza, 2003), and Koza (2006) 
reports 36 instances where GP discovered a solution 
infringing or duplicating some patent, which led Koza 
to claim that GP is an automated invention machine 
that routinely produces human-competitive results. 
However, the creation of a GP system for automatically 
evolving a full data mining algorithm, as proposed in 
this article, is a new research topic which is just now 
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starting to be systematically explored, as discussed in 
the next section.

MAIN FOCUS

The problem of automatically evolving a data mining 
algorithm to solve a given data mining task is very 
challenging, because the evolved algorithm should be 
generic enough to be applicable to virtually any data 
set that can be used as input to that task. For instance, 
an evolved algorithm for the classification task should 
be able to mine any classification data set (i.e., a data 
set having a set of records, each of them containing a 
class attribute and a set of predictor attributes – which 
can have different data types); an evolved clustering 
algorithm should be able to mine any clustering data 
set, etc.

In addition, the automatic evolution of a fully-
fledged data mining algorithm requires a GP method 
that not only is aware of the basic structure of the type 
of data mining algorithm to be evolved, but also is 
capable of avoiding fatal programming errors – e.g. 
avoiding infinite loops when coping with “while” or 
“repeat” statements. Note that most GP systems in the 
literature do not have difficulties with the latter problem 
because they cope only with relatively simple opera-
tions (typically mathematical and logical operations), 
rather than more sophisticated programming statement 
such as “while” or “repeat” loops. To cope with the two 
aforementioned problems, a promising approach is to 
use a grammar-based GP system, as discussed next.

Grammar-Based Genetic Programming

Grammar-Based Genetic Programming (GGP) is a 
particular type of GP where a grammar is used to 
create individuals (candidate solutions). There are 
several types of GGP (Wong & Leung, 2000; O’Neill 
& Ryan, 2003). A type of GGP particularly relevant for 
this article consists of individuals that directly encode 
a candidate program in the form of a tree, namely a 
derivation tree produced by applying a set of derivation 
steps of the grammar. A derivation step is simply the 
application of a production rule to some non-terminal 
symbol in the left-handed side of the rule, producing the 
(non-terminal or terminal) symbol in the right-handed 
side of the rule. Hence, each individual is represented 
by a derivation tree where the leaf nodes are terminal 

symbols of the grammar and the internal nodes are the 
non-terminal symbols of the grammar. 

The use of such a grammar is important because 
it not only helps to constrain the search space to valid 
algorithms but also guides the GP to exploit valuable 
background knowledge about the basic structure of the 
type of data mining algorithm being evolved (Pappa 
& Freitas, 2006; Wong & Leung, 2000). 

In the context of the problem of evolving data min-
ing algorithms the grammar incorporates background 
knowledge about the type of data mining algorithm 
being evolved by the GP. Hence, broadly speaking, 
the non-terminal symbols of the grammar represent 
high-level descriptions of the major steps in the pseudo-
code of a data mining algorithm, whilst the terminal 
symbols represent a lower-level implementation of 
those steps. 

A New Grammar-Based GP System for 
Automatically Evolving Rule Induction 
Algorithms

The previously discussed ideas about Grammar-Based 
Genetic Programming (GGP) were used to create a 
GGP system that automatically evolves a rule induc-
tion algorithm, guided by a grammar representing 
background knowledge about the basic structure of 
rule induction algorithms (Pappa & Freitas, 2006), 
(Pappa 2007). More precisely, the grammar contains 
two types of elements, namely: 

a. general programming instructions – e.g. if-then 
statements, for/while loops; and 

b. procedures specifying major operations of rule 
induction algorithms – e.g., procedures for ini-
tializing a classification rule, refining a rule by 
adding or removing conditions to/from it, select-
ing a (set of) rule(s) from a number of candidate 
rules, pruning a rule, etc.

Hence, in this GGP each individual represents a 
candidate rule induction algorithm, obtained by ap-
plying a set of derivation steps from the rule induction 
grammar. The terminals of the grammar correspond to 
modular blocks of Java programming code, so each 
individual is actually a Java program implementing a 
full rule induction algorithm. 

This work can be considered a major “case study” or 
“proof of concept” for the ambitious idea of automati-
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