
932 Section: Evolutionary Algorithms

Genetic Programming for Automatically
Constructing Data Mining Algorithms
Alex A. Freitas
University of Kent, UK

Gisele L. Pappa
Federal University of Minas Geras, Brazil

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

At present there is a wide range of data mining al-
gorithms available to researchers and practitioners
(Witten & Frank, 2005; Tan et al., 2006). Despite the
great diversity of these algorithms, virtually all of them
share one feature: they have been manually designed.
As a result, current data mining algorithms in general
incorporate human biases and preconceptions in their
designs.

This article proposes an alternative approach to the
design of data mining algorithms, namely the automatic
creation of data mining algorithms by means of Ge-
netic Programming (GP) (Pappa & Freitas, 2006). In
essence, GP is a type of Evolutionary Algorithm – i.e.,
a search algorithm inspired by the Darwinian process
of natural selection – that evolves computer programs
or executable structures.

This approach opens new avenues for research,
providing the means to design novel data mining
algorithms that are less limited by human biases and
preconceptions, and so offer the potential to discover
new kinds of patterns (or knowledge) to the user. It
also offers an interesting opportunity for the automatic
creation of data mining algorithms tailored to the data
being mined.

BACKGROUND

An Evolutionary Algorithm (EA) is a computational
problem-solving method inspired by the process
of natural selection. In essence, an EA maintains a
population of “individuals”, where each individual
represents a candidate solution to the target problem.
EAs are iterative generate-and-test procedures, where at
each “generation” (iteration) a population of individu-

als is generated and each individual has its “fitness”
computed. The fitness of an individual is a measure
of the quality of its corresponding candidate solution.
The higher the fitness of an individual, the higher the
probability that the individual will be selected to be a
“parent” individual. Certain operations (often “cross-
over” and/or “mutation” operations inspired by their
natural counterparts) are applied to the selected parent
individuals in order to produce “children” individuals.
The important point is that, since the children are in
general produced from parents selected based on fitness,
the children (new candidate solutions) tend to inherit
parts of the good solutions of the previous generation,
and the population as a whole gradually evolves to fitter
and fitter individuals (better and better solutions to the
target problem). For a comprehensive review of EAs in
general the reader is referred to (De Jong, 2006; Eiben
& Smith, 2003), and a comprehensive review of EAs
for data mining can be found in (Freitas, 2002).

The basic principle of EAs – i.e., artificial evolu-
tion of candidate solutions, where parent solutions are
selected based on their fitness in order to create new
children solutions – still holds in Genetic Program-
ming (GP). The main distinguishing feature of GP
– by comparison with other types of EA – is that the
candidate solutions represented by GP individuals are
(or at least should be) computer programs or execut-
able structures. GP has been an active research field
for about 15 years (Koza, 1992; Banzhaf et al., 1998;
Langdon & Poli, 2002; Koza, 2003), and Koza (2006)
reports 36 instances where GP discovered a solution
infringing or duplicating some patent, which led Koza
to claim that GP is an automated invention machine
that routinely produces human-competitive results.
However, the creation of a GP system for automatically
evolving a full data mining algorithm, as proposed in
this article, is a new research topic which is just now

 933

Genetic Programming for Automatically Constructing Data Mining Algorithms

G
starting to be systematically explored, as discussed in
the next section.

MAIN FOCUS

The problem of automatically evolving a data mining
algorithm to solve a given data mining task is very
challenging, because the evolved algorithm should be
generic enough to be applicable to virtually any data
set that can be used as input to that task. For instance,
an evolved algorithm for the classification task should
be able to mine any classification data set (i.e., a data
set having a set of records, each of them containing a
class attribute and a set of predictor attributes – which
can have different data types); an evolved clustering
algorithm should be able to mine any clustering data
set, etc.

In addition, the automatic evolution of a fully-
fledged data mining algorithm requires a GP method
that not only is aware of the basic structure of the type
of data mining algorithm to be evolved, but also is
capable of avoiding fatal programming errors – e.g.
avoiding infinite loops when coping with “while” or
“repeat” statements. Note that most GP systems in the
literature do not have difficulties with the latter problem
because they cope only with relatively simple opera-
tions (typically mathematical and logical operations),
rather than more sophisticated programming statement
such as “while” or “repeat” loops. To cope with the two
aforementioned problems, a promising approach is to
use a grammar-based GP system, as discussed next.

Grammar-Based Genetic Programming

Grammar-Based Genetic Programming (GGP) is a
particular type of GP where a grammar is used to
create individuals (candidate solutions). There are
several types of GGP (Wong & Leung, 2000; O’Neill
& Ryan, 2003). A type of GGP particularly relevant for
this article consists of individuals that directly encode
a candidate program in the form of a tree, namely a
derivation tree produced by applying a set of derivation
steps of the grammar. A derivation step is simply the
application of a production rule to some non-terminal
symbol in the left-handed side of the rule, producing the
(non-terminal or terminal) symbol in the right-handed
side of the rule. Hence, each individual is represented
by a derivation tree where the leaf nodes are terminal

symbols of the grammar and the internal nodes are the
non-terminal symbols of the grammar.

The use of such a grammar is important because
it not only helps to constrain the search space to valid
algorithms but also guides the GP to exploit valuable
background knowledge about the basic structure of the
type of data mining algorithm being evolved (Pappa
& Freitas, 2006; Wong & Leung, 2000).

In the context of the problem of evolving data min-
ing algorithms the grammar incorporates background
knowledge about the type of data mining algorithm
being evolved by the GP. Hence, broadly speaking,
the non-terminal symbols of the grammar represent
high-level descriptions of the major steps in the pseudo-
code of a data mining algorithm, whilst the terminal
symbols represent a lower-level implementation of
those steps.

A New Grammar-Based GP System for
Automatically Evolving Rule Induction
Algorithms

The previously discussed ideas about Grammar-Based
Genetic Programming (GGP) were used to create a
GGP system that automatically evolves a rule induc-
tion algorithm, guided by a grammar representing
background knowledge about the basic structure of
rule induction algorithms (Pappa & Freitas, 2006),
(Pappa 2007). More precisely, the grammar contains
two types of elements, namely:

a. general programming instructions – e.g. if-then
statements, for/while loops; and

b. procedures specifying major operations of rule
induction algorithms – e.g., procedures for ini-
tializing a classification rule, refining a rule by
adding or removing conditions to/from it, select-
ing a (set of) rule(s) from a number of candidate
rules, pruning a rule, etc.

Hence, in this GGP each individual represents a
candidate rule induction algorithm, obtained by ap-
plying a set of derivation steps from the rule induction
grammar. The terminals of the grammar correspond to
modular blocks of Java programming code, so each
individual is actually a Java program implementing a
full rule induction algorithm.

This work can be considered a major “case study” or
“proof of concept” for the ambitious idea of automati-

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/genetic-programming-automatically-constructing-data/10932

Related Content

Learning Temporal Information from Text
Feng Pan (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1146-1149).

www.irma-international.org/chapter/learning-temporal-information-text/10966

Sampling Methods in Approximate Query Answering Systems
Gautam Das (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1702-1707).

www.irma-international.org/chapter/sampling-methods-approximate-query-answering/11047

Pattern Preserving Clustering
Hui Xiong, Michael Steinbach, Pang-Ning Tan, Vipin Kumarand Wenjun Zhou (2009). Encyclopedia of Data

Warehousing and Mining, Second Edition (pp. 1505-1510).

www.irma-international.org/chapter/pattern-preserving-clustering/11019

Outlier Detection Techniques for Data Mining
Fabrizio Angiulli (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1483-1488).

www.irma-international.org/chapter/outlier-detection-techniques-data-mining/11016

Data Mining for Improving Manufacturing Processes
Lior Rokach (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 417-423).

www.irma-international.org/chapter/data-mining-improving-manufacturing-processes/10854

http://www.igi-global.com/chapter/genetic-programming-automatically-constructing-data/10932
http://www.igi-global.com/chapter/genetic-programming-automatically-constructing-data/10932
http://www.irma-international.org/chapter/learning-temporal-information-text/10966
http://www.irma-international.org/chapter/sampling-methods-approximate-query-answering/11047
http://www.irma-international.org/chapter/pattern-preserving-clustering/11019
http://www.irma-international.org/chapter/outlier-detection-techniques-data-mining/11016
http://www.irma-international.org/chapter/data-mining-improving-manufacturing-processes/10854

