
Category: Systems and Software Engineering

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

7212

Mutation Testing

INTRODUCTION

Mutation testing is a suitable technique to determine the
quality of test suites for a certain program. This testing
technique is based on the creation of mutants, that is,
versions of the original program with an intentionally
introduced fault. These errors are inserted within the
code through some defined rules called mutation op-
erators. Mutation operators represent typical mistakes
made by programmers when using a programming
language and they produce a simple syntactic change
in the program under test (PUT).

The mutation testing process starts with the genera-
tion of the mutants using the set of mutation operators.
Then, those mutants are executed against the test suite
created for the PUT in order to determine its quality.
Test cases are supposed to produce the correct output
when they are run on the original program. When the
output of a mutant is different from the output of the
original program, the mutant is classified as dead.
Otherwise, the mutant is still alive and needs to be
executed against the rest of the test cases to detect its
modification.

A good set of test cases should be able to detect
any changes generated affecting the program. Hence,
if some mutants remain alive after the test suite execu-
tion, new test cases can be supplied to kill them. In this
process, a mutation score is calculated to determine
the test suite effectiveness distinguishing the mutants
(see Equation 1 for the general calculation of mutation
score); the goal is to increase it until all the mutants are
killed. An equivalent mutant is produced when none
of the test cases is able to kill it as the meaning of the
program has not actually been modified. Equivalent
mutants, test data generation and the expensive com-

putational cost that this technique entails are the main
drawbacks to a broader usage of mutation testing.

MS P C KM
TM EM

(,)=
−

 (1)

MS: Mutation score
P: PUT
C: Test cases
KM: Killed mutants
TM: Total mutants
EM: Equivalent mutants

Mutation testing is a white-box testing technique,
i.e., it tests a program at the source code level. There-
fore, the set of mutation operators and the overall
technique should be developed around each program-
ming language in particular; the correct choice of the
set is one of the keys to successful mutation testing.
Thus, a great variety of research studies devoted to the
definition of mutation operators for specific program-
ming languages and tools automating the generation
of mutants can be found.

The purpose of the article is to look in depth at the
development and the current state of mutation testing
in order to widely make known this technique in the
computer science research field. Next sections deal
with the related work, the way that mutants are killed,
the steps to accomplish in the mutation testing process,
the approaches to evaluate mutation operators and the
suggested techniques to improve the aforementioned
problems. Finally, the C++ programming language
will be focused as an example of the development of
mutation testing.

Pedro Delgado-Pérez
University of Cádiz, Spain

Inmaculada Medina-Bulo
University of Cádiz, Spain

Juan José Domínguez-Jiménez
University of Cádiz, Spain

DOI: 10.4018/978-1-4666-5888-2.ch710

Mutation Testing

 S

Category: Systems and Software Engineering

7213

BACKGROUND

Mutation testing was originally proposed by Hamlet
(1977) and DeMillo, Lipton and Sayward (1978) and
its development has taken place in parallel with the
appearance of the different programming languages
(Offutt & Untch, 2001). As a result, in the early years,
most of the works centered on procedural program-
ming languages: Agrawal et al. (1989) defined a set
of 77 mutation operators for C, the tool Mothra was
developed including 22 operators to apply mutation
testing to Fortran (King & Offutt, 1991) and Offutt,
Voas, and Payne (1996) composed a set of 65 opera-
tors for the Ada language. The mutation operators for
these procedural languages are known as traditional
operators.

However, recently, new languages and paradigms
have drawn the attention as well as the research has
expanded towards other domains (Jia & Harman,
2011). As an illustration, we can find testing tools for
rather different languages like SQLMutation for SQL
(Tuya, Suárez-Cabal & de la Riva, 2007), GAmera
for WS-BPEL (Domínguez-Jiménez, Estero-Botaro,
García-Domínguez & Medina-Bulo, 2009) or AjMu-
tator for AspectJ (Delamare, Baudry & Le Traon,
2009). Besides, the attention to the object-oriented
(OO) paradigm has risen and several papers and tools
have appeared mainly around Java (Ahmed, Zahoor &
Younas, 2010). The different tools have been enumer-
ated by Jia and Harman (2011). Finally, new mutation
frameworks have been also developed lately: Mutpy
(n.d.) for Phyton 3.x, Mutant (n.d.) for Ruby or PIT
(n.d.) for Java and other JVM languages.

All these languages, even though sharing part of
the syntax, need a particularized study to define their
set of mutation operators and tools to generate the
mutants. For example, as exposed in Kim, Clark and
McDermid (2000), the aforementioned traditional
operators can be applied to test OO programs, but
those operators that were developed in programming
environments away from this paradigm, do not take
into account some types of faults related to features
of this kind of programs, so operators at the class-
level are necessary. Simultaneously, mutation testing,
usually performed on programs at the unit level, has
also been applied at other levels. Hence, Delamaro,
Maldonado, and Mathur (2001) studied the technique
to be used for integration testing and Mateo, Usaola and

Offutt (2012) even to test a complete system. Muta-
tion testing has also been performed on technologies
relating the SOA architecture (Bozkurt, Harman, &
Hassoun, 2013). Furthermore, apart from the code,
mutation testing has been used in other domains like
the specification of models, such as Finite State Ma-
chines (Fabbri, Delamaro, Maldonado, & Masiero,
1994) or Petri Networks (Fabbri, Maldonado, Masiero,
Delamaro, & Wong, 1996).

As the technique was evolving and it was applied
to real-world and bigger applications, it became
clearer the barriers that this technique involves, which
are discussed by Offutt and Untch (2001): the high
computational cost and the time that the user needs
to spend, for example, to determine the equivalent
mutants. Around these problems have emerged new
fields of study so that the technique gets a higher
degree of maturation (Usaola & Mateo, 2010; Grun,
Schuler, & Zeller, 2009). Besides, apart from the
mutation score, new calculations are being used to
enhance the effectiveness of the technique (Estero-
Botaro, Palomo-Lozano & Medina-Bulo, 2010).

The significance of mutation testing and its limi-
tations has been analyzed in different studies. The
empirical results in Offut, Pan, Tewary, and Zhang
(1996) showed that “16% more faults can be detected
using mutation adequate test sets than all-use test sets”
(Jia & Harman, 2011). Besides, a program related to
the civil nuclear field was used in an experiment com-
paring real faults and the faults modeled by mutants
(Daran & Thévenod-Fosse, 1996); 85% of the errors
simulated with mutants were produced by real faults
as well. On the other hand, the mutants created with
operators at the class-level in Ma, Kwon, and Kim
(2009) were fewer than with traditional ones, but they
produced a percentage of equivalence over 70%, unlike
the 5-15% usually produced with traditional operators.

MUTATION TESTING OVERVIEW

Killing Mutants

As stated, a mutant is dead or a test case kills a
mutant when the output of the original program and
the one of the mutant program are different. As an
illustration, we can consider testing a program with
the next statement:

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/mutation-testing/112419

Related Content

Mobile Sink with Mobile Agents: Effective Mobility Scheme for Wireless Sensor Network
Rachana Borawake-Sataoand Rajesh Shardanand Prasad (2017). International Journal of Rough Sets and

Data Analysis (pp. 24-35).

www.irma-international.org/article/mobile-sink-with-mobile-agents/178160

A Model Based on Data Envelopment Analysis for the Measurement of Productivity in the

Software Factory
Pedro Castañedaand David Mauricio (2020). International Journal of Information Technologies and

Systems Approach (pp. 1-26).

www.irma-international.org/article/a-model-based-on-data-envelopment-analysis-for-the-measurement-of-productivity-in-

the-software-factory/252826

IT Strategy Follows Digitalization
Thomas Ochsand Ute Anna Riemann (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 873-887).

www.irma-international.org/chapter/it-strategy-follows-digitalization/183799

Architecture as a Tool to Solve Business Planning Problems
James McKee (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 573-586).

www.irma-international.org/chapter/architecture-as-a-tool-to-solve-business-planning-problems/183772

Twitter Intention Classification Using Bayes Approach for Cricket Test Match Played Between

India and South Africa 2015
Varsha D. Jadhavand Sachin N. Deshmukh (2017). International Journal of Rough Sets and Data Analysis

(pp. 49-62).

www.irma-international.org/article/twitter-intention-classification-using-bayes-approach-for-cricket-test-match-played-

between-india-and-south-africa-2015/178162

http://www.igi-global.com/chapter/mutation-testing/112419
http://www.irma-international.org/article/mobile-sink-with-mobile-agents/178160
http://www.irma-international.org/article/a-model-based-on-data-envelopment-analysis-for-the-measurement-of-productivity-in-the-software-factory/252826
http://www.irma-international.org/article/a-model-based-on-data-envelopment-analysis-for-the-measurement-of-productivity-in-the-software-factory/252826
http://www.irma-international.org/chapter/it-strategy-follows-digitalization/183799
http://www.irma-international.org/chapter/architecture-as-a-tool-to-solve-business-planning-problems/183772
http://www.irma-international.org/article/twitter-intention-classification-using-bayes-approach-for-cricket-test-match-played-between-india-and-south-africa-2015/178162
http://www.irma-international.org/article/twitter-intention-classification-using-bayes-approach-for-cricket-test-match-played-between-india-and-south-africa-2015/178162

