
 W

7641

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Web Technologies

DOI: 10.4018/978-1-4666-5888-2.ch753

Schema Evolution

INTRODUCTION

In information systems, not only do data change 
over time, also database schemata evolve frequently 
(Sjøberg, 1993). Changing database schema, which 
is a common but often troublesome task in database 
administration, occurs for many reasons such as changes 
in user requirements, compliance to new regulations, 
addition of new functionalities, or correction of defi-
ciencies in the current schema. Usually, the database 
administrator changes a database schema through a 
schema definition language (e.g., SQL).

Two fundamental aspects are involved by schema 
change: (1) semantics of change, which deals with the 
effects of the change on the schema itself, in order to 
maintain schema consistency after schema changes, 
and (2) change propagation, which deals with the ef-
fects of the change on the underlying data, in order to 
guarantee data consistency with the modified schema.

For most database applications, changing the 
schema of the database without loss of existing data is 
a significant challenge: it is usually a time-consuming 
and error-prone task which must be done carefully. In 
the literature (Jensen et al., 1998), schema evolution 
has been defined as the modality for the management of 
schema changes which relieves database programmers 
and administrators from this burden, by automatically 
recovering extant data and possibly adapting them to 
the new schema. During the last two decades, a lot of 
theoretical work has been done on schema evolution 
in both temporal and conventional databases, within 
the relational and object-oriented settings and more 

recently for the XML environment, according to the 
growing adoption of XML as a data modeling language 
and storage format.

However, this issue remains so far almost unan-
swered at the practical level: existing commercial 
systems (i.e., DBMSs like Oracle and DB2, and 
schema management tools) provide a limited support 
for schema evolution. Thus, currently, each database 
administrator uses ad hoc techniques to manage the 
evolution of a database schema.

The main goal of this article is (1) to present the 
different research proposals that deal with schema 
evolution, and (2) to discuss the support of schema 
evolution in mainstream DBMSs. The rest of this article 
is organized as follows. The next section gives some 
background on our subject. In “Current Research in 
Schema Evolution,” we present the different research 
proposals on schema evolution. “DBMS Support for 
Schema Evolution” surveys the support of schema 
evolution in the state of the art of database technol-
ogy. Finally, future work directions and conclusion 
are provided.

BACKGROUND

In this section, we illustrate with a simple example 
the functioning of schema evolution, contrasting it 
with the lowest level of schema change support that 
can be embedded in a database, that is the modality 
of schema modification (Jensen et al., 1998). Assume 
that we have a relational database that contains only 

Zouhaier Brahmia
University of Sfax, Tunisia

Fabio Grandi
University of Bologna, Italy

Barbara Oliboni
University of Verona, Italy

Rafik Bouaziz
University of Sfax, Tunisia



 W

Category: Web TechnologiesSchema Evolution

7642

an AUTHOR relation with the attributes ID (primary 
key), NAME, PHONE, and COUNTRY. The first state 
of this database is as shown in Figure 1.

The catalogues store information on the schema 
S1 of the AUTHOR relation. The table AUTHOR 
contains two tuples for two authors. Then consider the 
following schema changes:

ALTER TABLE AUTHOR 
 DROP COLUMN PHONE; 
ALTER TABLE AUTHOR 
 ADD COLUMN EMAIL CHAR(30);

The schema modification technique allows users 
to effect changes to the database schema, but neither 
previous schema nor its underlying data are preserved: 
the old schema is replaced by the new schema, which 
is initially empty as data populating the old schema 
are discarded. The effects in our example would be as 
shown in Figure 2.

The database designer or administrator must restore 
information concerning authors Aicha and Cristiana 
in database state S2 by explicitly inserting them as 
new tuples, through the following SQL statements 
(executed within the same transaction containing the 
schema changes or later):

INSERT INTO AUTHOR  
 VALUES(1, ‘Aicha’, ‘Tunisia’, 
‘aicha@author.tn’);  
INSERT INTO AUTHOR 
 VALUES(2, ‘Cristiana’, ‘Italy’, 
‘cristiana@author.it’);

Hence, this solution leads to loss of information 
and obsolescence of applications developed according 
to the original schema. Although this technique may 
seem unsuitable, since it is straightforward to imple-
ment, it is actually the most widely adopted technique 
for managing schema changes in existing information 
systems.

With schema evolution, after a schema change the 
old schema is replaced by the new one and old extant 
data, which are still conforming to the new schema, are 
automatically recovered. In our example, the effects 
would be as shown in Figure 3.

The new email information could then be introduced 
through the following SQL statements replacing Nulls 
with correct values:

UPDATE AUTHOR  
 SET EMAIL=’aicha@author.tn’  
  WHERE ID = 1;  
UPDATE AUTHOR 
 SET EMAIL=’cristiana@author.it’  
  WHERE ID = 2;

The final state of the database is as shown in Figure 4.
Schema evolution can anyway lead to a partial 

loss of information. For instance, dropping columns 
means losing the related data. The change of the type 
of a column could lead to loss of data of this column 
if the new type is not compatible with the previous 
type. Furthermore, schema evolution technique does 
not guarantee continued functioning of existing ap-
plications, since programs that use dropped columns 

Figure 1. 

Figure 2. 



 

 

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/schema-evolution/112467

Related Content

The Use of ICT in Researcher Development
Sam Hopkins, Erin A. Hensleeand Dawn C. Duke (2019). Enhancing the Role of ICT in Doctoral Research

Processes (pp. 209-233).

www.irma-international.org/chapter/the-use-of-ict-in-researcher-development/219940

A Study on Bayesian Decision Theoretic Rough Set
Sharmistha Bhattacharya Halder (2014). International Journal of Rough Sets and Data Analysis (pp. 1-14).

www.irma-international.org/article/a-study-on-bayesian-decision-theoretic-rough-set/111309

New Factors Affecting Productivity of the Software Factory
Pedro Castañedaand David Mauricio (2020). International Journal of Information Technologies and

Systems Approach (pp. 1-26).

www.irma-international.org/article/new-factors-affecting-productivity-of-the-software-factory/240762

Research Intentions are Nothing without Technology: Mixed-Method Web Surveys and the

Coberen Wall of Pictures Protocol
Stéphane Ganassaliand Carmen Rodriguez-Santos (2013). Advancing Research Methods with New

Technologies (pp. 138-156).

www.irma-international.org/chapter/research-intentions-nothing-without-technology/75943

Towards Google Earth: A History of Earth Geography
Hatem F. Halaoui (2009). Information Systems Research Methods, Epistemology, and Applications (pp.

294-310).

www.irma-international.org/chapter/towards-google-earth/23481

http://www.igi-global.com/chapter/schema-evolution/112467
http://www.irma-international.org/chapter/the-use-of-ict-in-researcher-development/219940
http://www.irma-international.org/article/a-study-on-bayesian-decision-theoretic-rough-set/111309
http://www.irma-international.org/article/new-factors-affecting-productivity-of-the-software-factory/240762
http://www.irma-international.org/chapter/research-intentions-nothing-without-technology/75943
http://www.irma-international.org/chapter/towards-google-earth/23481

