
 D

1931

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Data Mining and Databases

DOI: 10.4018/978-1-4666-5888-2.ch186

The Evolution of UML

INTRODUCTION

Since its inception, the Unified Modeling Language 
(UML) has risen to relative ubiquity in the IT com-
munity. However, despite its status as an ISO industry 
standard (International Organization for Standardiza-
tion, 2005), the UML is still evolving to accommodate 
the changing needs of industry. This development aims 
to ensure that UML remains effective and relevant to 
the most current developments in software engineer-
ing techniques. This article charts the progress of this 
arguably indispensable standard and discusses the 
ongoing evolution in three sections: The Past, The 
Present, and The Future. The Past section will detail 
the reasons for which standardization was needed, the 
history behind its inception and development, initial 
reception from the user community and also its initial 
effectiveness. The Present section then describes the 
various changes between UML 1.0 and UML 2.4.1. 
The reasons behind these changes and the effectiveness 
of them are then discussed. Finally in The Future sec-
tion, the article will describe the current state of UML, 
predictions for the next specification of UML based 
on the Object Management Group documentation, 
and also common problems and suggestions from the 
wider community which may be addressed in future 
iterations of the specification.

BACKGROUND

The Unified Modeling Language is a form of notation 
that was developed with the core goal of creating a 
standardized representation of general-purpose models, 
with the focus of functionality of these primarily being 
for software engineering and systems development. 
Despite this main focus of approach in the specifi-

cation design, the language is meant to attain some 
level of applicability regardless of the subject matter. 
The reason a modeling language was needed in order 
to achieve this was to manage the complexity of the 
subject at hand - whether it was system or software 
design or another subject entirely. As a model is by 
nature an abstraction of reality, it allows the user to 
characterize the design of the subject in an effective 
manner. This abstract model then enables the user to 
better evaluate the subject and communicate that in an 
efficient and meaningful way rather than attempting to 
demonstrate their intentions using the actual software 
or system in question. In order to achieve this intended 
core goal the language has been modified and refined 
over time, resulting in evolutions of varying effective-
ness and popularity.

THE EVOLUTION OF UML

The Past

In the late 1950s, the first object orientated program-
ming language, Simula was introduced, and with it came 
“a powerful new combination of ideas into structuring 
computer programs, including instantiation of abstract 
data types, inheritance, and polymorphism” (Cook, 
2012, p. 471). To accompany this new idea of object 
orientated languages, methods for designing software 
in this object orientated way also started to emerge, and 
in time they were referred to as modeling languages. 
By the late 1980s there were more than fifty separate 
modeling languages - each with their own syntax, 
structure and notation. There were many issues with 
this overwhelming variety of languages and it has been 
noted that “such open-ended approaches [could] affect 
and constrain the system in unexpected ways or even 

Rebecca Platt
Murdoch University, Australia

Nik Thompson
Murdoch University, Australia



Category: Data Mining and Databases

 D

The Evolution of UML

1932

result in failure. For example, system development 
and implementation failure rates remained stubbornly 
high. Cost overruns and time overruns were still the 
norm, rather than the exception” (Erickson & Siau, 
2013, p. 296). As it was humanly impossible in this 
kind of environment for all system analysts and other 
relevant personnel to be trained in all methods, the 
lack of communication and technical understanding 
coupled with the fact that the majority of the languages 
available were unable to meet the demands required 
of them, led to alarmingly high project failure rates.

This lack of standardization and communication 
was not only negatively affecting development projects 
but also limiting the potential of object-orientated 
technology in general. In response to this very signifi-
cant concern, The Object Management Group (OMG) 
was founded in 1989. The initial and presiding goal 
of OMG was to “create a standard for communication 
amongst distributed objects” (Cook, 2012, p. 472). This 
goal was intended to foster progress toward a common 
object model that would work on all platforms on all 
kinds of development projects. In order to further this 
goal specifically in the domain of modeling languages, 
OMG launched the Object Analysis and Design Special 
Interest Group to study design methods. This is also 
the origin point from which any Request For Propos-
als were issued.

Around the time that OMG was founded, a sepa-
rate company called Rational was also attempting to 
implement a solution to the over saturation of modeling 
languages in use. To this end they recruited Grady Booch 
and James Rumbaugh in 1996. These men were the 
creators of two of the dominant modeling languages of 
the time. Booch’s method was called Object-Oriented 
Design (OOD) (Booch, 1991) and Rumbaugh’s method 
was known as the Object-Modeling Technique (OMT) 
(Rumbaugh, Blaha, Lorensen, Eddy, & Premerlani, 
1990). They were soon joined by Ivar Jacobson, whose 
Object-Oriented Software Engineering (OOSE) method 
(Jacobson, 1992) was also a prominent modeling lan-
guage at the time. “The Three Amigos” as they later 
came to be known then set to work on the develop-
ment of the Unified Modeling Language. A potentially 
universal standard form of notation with the intent to 
create ease of communication and reduce the risk of 
failure for projects, with human factors considered 
above all as this had been identified as a main failure 
point of previous projects (Erickson & Siau, 2013).

The UML 0.91 specification was the initial result of 
the unification of OOD, OMT, and OOSE, a somewhat 
successful endeavor as each base modeling language 
had unique strengths; Booch’s OOD was good for low 
level design, Rumbaugh’s OMT was effective for OO 
analysis, and Jacobson’s OOSE was good for high level 
design, as well as allowing for the implementation of 
use cases. Working with “The Three Amigos” were 
the UML Partners; a software development team who 
represented a range of different of vendors and system 
integrators, who would collaborate to propose UML as 
the standard modeling language for the OMG (Kobryn, 
1999). Representatives from other companies (such as 
IBM, Microsoft and Oracle) were consulted during the 
Object-Oriented Programming, Systems, Languages 
and Applications (OOPSLA) conference held that year, 
with the outcome of these consultations resulting in 
the UML 1.0 draft which was then submitted to OMG 
in response to the Request For Proposal. UML 1.0 was 
accepted by OMG in November, 1997.

The initial response after the release of the specifica-
tion indicated that the Unified Modeling Language was 
very effective, once the personnel involved had made 
it past the difficult learning curve of training in a new 
modeling language. In fact there is speculation that 
the response towards UML was actually too great - for 
while it was proven to be much more effective than its 
predecessors, it still had issues. The rapid uptake and 
positive response meant that the uptake of UML ended 
up growing at an alarming rate before it had finished 
standardizing properly.

The Present

When initially accepted as a standard, UML 1.0 ap-
peared to meet all stated requirements and to be an 
effective modeling language. Since then, however, 
a number of revisions have taken place to alter the 
notation in order to fix various shortcomings and to 
become more effective. For example, some of the is-
sues that were resolved between UML 1.1 and UML 
1.3 included the lack of integration between certain 
model types, the absence of certain modelers and 
that some of the standard elements were named and 
organized inconsistently. There was also trouble with 
the architectural alignment – According to OMG “The 
submitters fell short of their goal of implementing a 
4-layer metamodel architecture using a strict metamod-



 

 

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/the-evolution-of-uml/112598

Related Content

Components of a Distance Education Evaluation System
Martha Henckell, Michelle Kilburnand David Starrett (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 2220-2228).

www.irma-international.org/chapter/components-of-a-distance-education-evaluation-system/112633

Estimating Overhead Performance of Supervised Machine Learning Algorithms for Intrusion

Detection
Charity Yaa Mansa Baidoo, Winfred Yaokumahand Ebenezer Owusu (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-19).

www.irma-international.org/article/estimating-overhead-performance-of-supervised-machine-learning-algorithms-for-

intrusion-detection/316889

UX Quality with Online Learning Systems and Course Materials
Elizabeth Sucupira Furtado (2015). Encyclopedia of Information Science and Technology, Third Edition (pp.

7557-7563).

www.irma-international.org/chapter/ux-quality-with-online-learning-systems-and-course-materials/112457

Image Segmentation Using Rough Set Theory: A Review
Payel Roy, Srijan Goswami, Sayan Chakraborty, Ahmad Taher Azarand Nilanjan Dey (2014). International

Journal of Rough Sets and Data Analysis (pp. 62-74).

www.irma-international.org/article/image-segmentation-using-rough-set-theory/116047

Twitter Intention Classification Using Bayes Approach for Cricket Test Match Played Between

India and South Africa 2015
Varsha D. Jadhavand Sachin N. Deshmukh (2017). International Journal of Rough Sets and Data Analysis

(pp. 49-62).

www.irma-international.org/article/twitter-intention-classification-using-bayes-approach-for-cricket-test-match-played-

between-india-and-south-africa-2015/178162

http://www.igi-global.com/chapter/the-evolution-of-uml/112598
http://www.irma-international.org/chapter/components-of-a-distance-education-evaluation-system/112633
http://www.irma-international.org/article/estimating-overhead-performance-of-supervised-machine-learning-algorithms-for-intrusion-detection/316889
http://www.irma-international.org/article/estimating-overhead-performance-of-supervised-machine-learning-algorithms-for-intrusion-detection/316889
http://www.irma-international.org/chapter/ux-quality-with-online-learning-systems-and-course-materials/112457
http://www.irma-international.org/article/image-segmentation-using-rough-set-theory/116047
http://www.irma-international.org/article/twitter-intention-classification-using-bayes-approach-for-cricket-test-match-played-between-india-and-south-africa-2015/178162
http://www.irma-international.org/article/twitter-intention-classification-using-bayes-approach-for-cricket-test-match-played-between-india-and-south-africa-2015/178162

