Enhancing Service Integrity of Byzantine Fault Tolerant Applications

Wenbing Zhao

Department of Electrical and Computer Engineering, Cleveland State University, USA

INTRODUCTION

A Byzantine fault tolerant application usually employs a Byzantine fault tolerance (BFT) algorithm, such as PBFT (Castro & Liskov, 2002), to ensure the total ordering of incoming requests to the server replicas, and to coordinate the replicas activities. In the presence of application non-determinism, such as the access of local clocks, the BFT algorithm typically ensures that all non-faulty replicas use the same nondeterministic values. While this approach works well for some applications, such as a replicated file system, it does not work for many Web-based applications that rely on the use of random numbers.

For example, consider an Internet application that relies on the use of session-ids for stateful interactions between the server and its clients. As pointed out in (Dorrendorf, Gutterman, & Pinkas, 2007), if the session-id of an active session can be predicted, the client's session with the server could be hijacked, which could lead to the leak of confidential information regarding the client, such as name, address, and the order history, or unauthorized orders (if the one-click option for placing orders is enabled). The session-id may be predicted by searching the limited entropy space if weak random bits are used in an application. For example, the authors of (Dorrendorf, Gutterman, & Pinkas, 2007) reverse-engineered a version of Tomcat (a popular Java Servlet Engine) and the related operations in a Window's based Java Virtual Machine. They could attack the system by performing about 251 searches in finding an active session-id.

Therefore, it is critical not to weaken the strength of the random bits essential for the integrity of their operations when replicating these systems for Byzantine fault tolerance. For a sound coordination algorithm, it is essential to enable each replica to access its own entropy source and maintain its independence in such operations. However, this desire is in conflict with the basic requirement for state machine replication (Schneider, 1990), which mandates that the replicas must be deterministic or rendered deterministic to maintain strong replica consistency. The conflicting requirements for security and replication must be reconciled to avoid the dilemma of either favoring security over high availability by not performing state machine replication of the systems, or trading security for high availability by removing the randomness of the systems in order to perform state machine replication.

In this article, we present a novel replica coordination algorithm, referred to as the Collective-Determination BFT algorithm, or CD-BFT algorithm in short, towards the reconciliation of the conflicting requirements for security and for strongly consistent replication. The central idea behind this algorithm is that all random numbers to be used by the replicas are collectively determined, and furthermore, the determination is based on the contributions made by a quorum of replicas, at least one of which is correct.

In the CD-BFT algorithm, the replicas first reach a Byzantine agreement on the set of contributions from replicas, and then apply a deterministic algorithm, such as the bitwise exclusive-or operation (Young & Yung, 2004), to compute the final random value. The freshness of the random numbers generated is application dependent. Our approach does not alter the freshness of the random numbers. If a pseudo-random number generator is used, it should be periodically reseeded from a good entropy source.

BACKGROUND

An arbitrary fault is often referred to as a Byzantine fault. The term was introduced in (Lamport, Shostak, & Pease, 1982) to highlight a specific faulty behavior that a Byzantine faulty process may disseminate conflicting information to other processes. For example,

DOI: 10.4018/978-1-4666-5888-2.ch276

Ξ

a compromised process might exhibit such Byzantine faulty behavior. Byzantine fault tolerance refers to the capability of tolerating Byzantine faults in a system. It can be achieved by introducing sufficient redundancy into the system and by using a sophisticated replica coordination algorithm that can cope with Byzantine faulty replicas and clients. A basic requirement for such an algorithm is to ensure that all server replicas agree on the total ordering of the requests received despite the existence of Byzantine faulty replicas and clients. Such an agreement is often referred to as Byzantine agreement (Lamport, Shostak, & Pease, 1982).

Recently, a number of efficient BFT algorithms (Castro & Liskov, 2002; Kotla et al., 2007; Yin et al., 2003) have been proposed. Our CD-BFT algorithm is derived from the PBFT algorithm and we use the same system model as that in (Castro & Liskov, 2002). The PBFT algorithm operates in an asynchronous distributed environment. The safety property of the algorithm, *i.e.*, all correct replicas agree on the total ordering of requests, is ensured without any assumption of synchrony. However, for the algorithm to make progress towards a Byzantine agreement (*i.e.*, liveness), certain synchrony is needed, for example, a reasonable assumption is that the message transmission and processing delay has an asymptotic upper bound. This bound is dynamically explored in the algorithm in that each time a view change occurs, the timeout for the new view is doubled.

How to ensure strong replica consistency in the presence of replica non-determinism has been of research interest for a long time (Castro & Liskov, 2002; Castro, Rodrigues, & Liskov, 2003; Powell, 1991; Slember & Narasimhan; 2006), most of which are for fault tolerant systems using the benign fault model. However, while the importance of the use of good random numbers has long been recognized in building secure systems (Viega & McGraw, 2002), we have yet to see substantial research work on how to preserve the randomized operations necessary to ensure the system integrity in a fault tolerant system. For the type of systems where the use of random numbers is crucial to their service integrity, the benign fault model is obviously inadequate and the Byzantine fault model must be employed if fault tolerance is required.

Some form of replica non-determinism, in particular those related to timestamp operations, has been studied in the context Byzantine fault tolerant systems (Castro & Liskov, 2002; Castro, Rodrigues, & Liskov, 2003). However, as we will argue in the next section, the existing approach is vulnerable to the presence of colluding Byzantine faulty replicas and clients. We also studied the replica non-determinism issue with the emphasis of classification of non-determinism types and the systematic handling of various types of replica non-determinism (Zhang et al., 2011).

RECONCILATION OF SECURITY AND REPLICATION REQUIREMENTS

Pitfalls in Controlling Replica Randomness

In this section, we analyze a few well-known approaches that one may attempt to use to ensure replica consistency in the presence of replica randomness. We show that they are not robust against Byzantine faulty replicas and clients. We reiterate here the importance of using random bits for security- related operations. Any attempt to weaken or remove such randomness from the system for the purpose of replication may compromise the system integrity. Furthermore, for Byzantine fault tolerance, it is essential not to place undue trust to any single replica, such as the primary replica, because it is virtually impossible to verify in real-time if the random number proposed by a replica is truly random, and consequently, if that particular replica is compromised, the integrity of the entire replicated system will be lost.

For systems that use a pseudo-random number generator, the replica consistency can be easily achieved by using the same seed value to initialize the generator. One might attempt to use the sequence number assigned to the request as the seed. Even though this approach is perhaps the simplest way to render replicas deterministic (since no extra communication step is needed and no extra information is to be included in the control messages for total ordering of requests), it takes the randomness away from the system. Consequently, a Byzantine faulty client can easily guess the seed and predict the random numbers. A seemingly more robust approach is to use the timestamp as the seed to the pseudo-random number generator. As shown in (Viega & McGraw, 2002; Young & Yung, 2004), the use of timestamp does not offer more robustness 6 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/enhancing-service-integrity-of-byzantine-faulttolerant-applications/112702

Related Content

Exploring ITIL® Implementation Challenges in Latin American Companies

Teresa Lucio-Nietoand Dora Luz González-Bañales (2019). International Journal of Information Technologies and Systems Approach (pp. 73-86).

www.irma-international.org/article/exploring-itil-implementation-challenges-in-latin-american-companies/218859

Integrated Design of Building Environment Based on Image Segmentation and Retrieval Technology

Zhou Liand Hanan Aljuaid (2024). International Journal of Information Technologies and Systems Approach (pp. 1-14).

www.irma-international.org/article/integrated-design-of-building-environment-based-on-image-segmentation-andretrieval-technology/340774

Implementation of a Service Management Office Into a World Food Company in Latin America

Teresa Lucio-Nietoand Dora Luz Gonzalez-Bañales (2021). International Journal of Information Technologies and Systems Approach (pp. 116-135).

www.irma-international.org/article/implementation-of-a-service-management-office-into-a-world-food-company-in-latinamerica/272762

Knowledge Sharing and Crowdsourcing as an Enterprise Opportunity

Lucia Aielloand Claudia Cacia (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 4608-4617).

www.irma-international.org/chapter/knowledge-sharing-and-crowdsourcing-as-an-enterprise-opportunity/112903

Big Data Time Series Stream Data Segmentation Methods

Dima Alberg (2018). *Encyclopedia of Information Science and Technology, Fourth Edition (pp. 364-372).* www.irma-international.org/chapter/big-data-time-series-stream-data-segmentation-methods/183750