
 I

4107

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: IT Research and Theory

DOI: 10.4018/978-1-4666-5888-2.ch404

Formal Specification Language 
for Agent Oriented Systems

INTRODUCTION

Software engineering is a developing discipline in 
engineering. Traditional software engineering meth-
ods focus on development of reliable software going 
through sequential software life cycle phases. Formal 
methods in software requirements specification use 
mathematical rules and a fixed set of syntax and se-
mantics to specify software systems. The validation of 
software requirements specification after implementa-
tion is also made possible through the application of 
formal methods to software requirements specifica-
tion. Agent oriented software engineering involves 
the use of agents to realize an entire system. Agents 
are autonomous and are used to accomplish a specific 
task. The characteristics and behavioral properties of 
agent systems involve a high level of complex design. 
The design and development of such complex systems 
can become more challenging by the use of traditional 
software engineering practices. Using formal methods 
to specify the agent systems can result in highly reli-
able systems.

A few of the concerns addressed for the use of 
formal methodologies along with software require-
ments specifications are as follows: ease of use and 
understandability rendered by the formal approach; 
level of expertise required to use the formal approach 
to specify software systems; and existence/develop-
ment of tool support to apply formal methodologies to 
software specifications and to validate the specification 
after development using tool support. These concerns 
do not address the complete set, but address a few of 
the important factors. This article draws the attention 
of the readers to the use of formal methods in the soft-
ware requirements specification phase by addressing 
those concerns. Agent oriented software systems is a 

software engineering domain that is gaining importance 
due to the vast growth of information around the world. 
The development of agent oriented software systems 
seems to be inclined towards the application of formal 
methodologies due to the level of preciseness and 
abstraction required to address detailed functionalities 
of the systems. Formal methodologies applied while 
specifying agent oriented software systems can result in 
the development of correct and reliable agent systems.

This article gives an introduction to formal speci-
fication languages and discusses ways of using formal 
methods to specify software agent systems. Agent 
oriented methods are becoming popular and are ap-
plied to a wide variety of application domains. Due 
to this diversity, the notion of agents along with their 
behavioral characteristics will be discussed in the be-
ginning to define the scope and boundaries. The agent 
architecture and the characteristics are discussed while 
developing the formal specifications. The article has 
been organized into two broad categories: addressing 
the concerns in the application of formal methods 
during the software specification phase of software 
development along with ways to overcome them; and 
application of formal methodologies to specify complex 
agent systems.

BACKGROUND

This section describes related work that exists in ap-
plying formal methods to specify software systems in 
specific agent oriented software systems. The state 
of the art with respect to the agent oriented software 
specification is also described in this section.

de Vries et al. (de Vries et al., 2001) introduced 
a new operational model of agents that describes the 

Vinitha Hannah Subburaj
Baldwin Wallace University, USA

Joseph E. Urban
Texas Tech University, USA



Category: IT Research and Theory

 I

Formal Specification Language for Agent Oriented Systems

4108

interaction of agents with each other and with the en-
vironment. An agent is viewed as a program that has 
a state. An agent’s state has two parts: a sense buffer 
that is used to store the observed and communicated 
information, and the mental state that consists of a set 
of mental formulas. Kinny (Kinny, 2001) introduced 
an algebraic approach that describes the operational 
semantics of agent computation. Kinny defined agents 
as a strong encapsulation of beliefs, intentions, and 
plans. The agent interacts with the environment us-
ing two interfaces namely: sensors and effectors. The 
framework defined by Kinny follows an algebraic 
approach. The computation specified in the algebraic 
approach is kept separate from the agent’s program. 
Bosse et al. (Bosse et al., 2006) proposed the predicate 
logic Temporal Trace Language (TTL) for formally 
specifying multi-agent systems. Both quantitative and 
qualitative aspects of agent systems were specified 
using the Temporal Trace Language.

Rahman et al. (Rahman et al., 2008) introduced a 
formal model for an agent based supply chain frame-
work in a virtual enterprise. Based on the requirements 
specification, a decision tree was used to capture the 
logic of production planning. A decision tree contains 
leaf nodes and non-leaf nodes. The leaves of the decision 
tree are labeled with classifications and the non-leaf 
nodes are labeled with attributes. Weiss et al. (Weiss 
et al., 2006) introduced a formal language, Autonomy 
Specification Language (ASL), for formally specifying 
the agent activities along with the set of constraints on 
these activities. The syntax of ASL has been described 
using extended Backus-Naur form. A multi-agent 
system was developed by Bagic (Bagic, 2004) with 
the application of a methodology that extends AUML 
with Petri nets. The work focused on analyzing the 
connecting points between current AUML specifica-
tions with concepts of Petri nets. AUML was used as a 
main modeling tool for a multi-agent system and Petri 
nets as a formal verification and validation tool. Luck 
and d’Inverno (Luck & d’Inverno, 1995, 2001) intro-
duced a formal and conceptual framework for defining 
agent systems. The framework for defining agents 
was introduced by the application of formal methods. 
The Z specification language was used to formally 
specify agent systems. A high level of abstraction and 
incrementally increasing the specification details of 
agent systems was presented by the framework. The Z 
language allowed for the use of mathematical notations 
to formally specify agent systems.

Guan and Ghose (Guan & Ghose, 2005) proposed 
an executable specification framework for agent ori-
ented conceptual modeling. The two kinds of graphical 
models used in the i* framework are: the Strategic 
Dependency (SD) model and the Strategic Rationale 
(SR) model. The SD model captures the social context 
and the SR model captures the internal characteristics 
of the actors in a system.

Notations are symbols used in a formal methodology 
to represent elements in a system. A modeling technique 
describes a set of models used in the methodology to 
depict a system with different levels of abstraction. The 
list of properties used to assess the notations and model-
ing techniques as given by Sturm and Shehory (Sturm 
& Shehory, 2004) are accessibility, analyzability, 
complexity management, executability, expressiveness, 
modularity, and preciseness. A comparative analysis 
of the above mentioned existing agent methodologies 
based on notation and modeling properties as specified 
by Sturm and Shehory indicates that not all formal 
agent specification languages satisfy the executability 
criterion and the complexity management criterion. 
The complexity management criterion deals with the 
ability of a methodology to deal with different levels 
of abstraction. The extended Descartes specification 
language uses a simple tree structuring method with 
indentation making it easy to read and understand. The 
extended Descartes specifications language specifica-
tions are written in a top-down modular approach. 
The case study presented in this article for specifying 
agent systems can be used to determine the ease of 
understanding of the specifications written using the 
extended Descartes specification language. The agent 
framework described in this article addressed both low 
level and high level abstraction concepts of an agent 
system satisfying the complexity management criterion. 
The extended Descartes specifications are executable 
using the implemented interpreter.

The Descartes specification language (Urban, 
1977) was designed for use throughout the software 
life cycle. The relationship between the input and 
the output of a system is functionally specified when 
using this specification language. Descartes defines 
the input data and output data and then relates them 
in such a way that output data becomes a function of 
input data. The data structuring methods used with this 
language are known as Hoare trees. These Hoare trees 
use three structuring methods, namely direct product, 
discriminated union, and sequence.



 

 

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/formal-specification-language-for-agent-oriented-

systems/112853

Related Content

The Influence of Structure Heterogeneity on Resilience in Regional Innovation Networks
Chenguang Li, Jie Luo, Xinyu Wangand Guihuang Jiang (2024). International Journal of Information

Technologies and Systems Approach (pp. 1-14).

www.irma-international.org/article/the-influence-of-structure-heterogeneity-on-resilience-in-regional-innovation-

networks/342130

Digital Tools Aimed to Represent Urban Survey
Cristina Boido, Pia Davicoand Roberta Spallone (2021). Encyclopedia of Information Science and

Technology, Fifth Edition (pp. 1181-1195).

www.irma-international.org/chapter/digital-tools-aimed-to-represent-urban-survey/260260

Online Learning Propelled by Constructivism
Kathaleen Reid-Martinezand Linda D. Grooms (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 2588-2598).

www.irma-international.org/chapter/online-learning-propelled-by-constructivism/183970

Improving Health Care Management Through the Use of Dynamic Simulation Modeling and

Health Information Systems
Daniel Goldsmithand Michael Siegel (2012). International Journal of Information Technologies and Systems

Approach (pp. 19-36).

www.irma-international.org/article/improving-health-care-management-through/62026

Holland's Vocational Theory and Personality Traits of Information Technology Professionals
John W. Lounsbury, R. Scott Studham, Robert P. Steel, Lucy W. Gibsonand Adam W. Drost (2009).

Handbook of Research on Contemporary Theoretical Models in Information Systems (pp. 529-543).

www.irma-international.org/chapter/holland-vocational-theory-personality-traits/35850

http://www.igi-global.com/chapter/formal-specification-language-for-agent-oriented-systems/112853
http://www.igi-global.com/chapter/formal-specification-language-for-agent-oriented-systems/112853
http://www.irma-international.org/article/the-influence-of-structure-heterogeneity-on-resilience-in-regional-innovation-networks/342130
http://www.irma-international.org/article/the-influence-of-structure-heterogeneity-on-resilience-in-regional-innovation-networks/342130
http://www.irma-international.org/chapter/digital-tools-aimed-to-represent-urban-survey/260260
http://www.irma-international.org/chapter/online-learning-propelled-by-constructivism/183970
http://www.irma-international.org/article/improving-health-care-management-through/62026
http://www.irma-international.org/chapter/holland-vocational-theory-personality-traits/35850

