
593

LLogic Programming Languages for
Expert Systems
James D. Jones
Center for Advanced Intelligent Sytems, Texas Tech University, USA
Computer Science, Angelo State University, USA

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

IntroductIon

“Expert systems” are a significant subset of what is
known as “decision support systems” (DSS). This ar-
ticle suggests a different paradigm for expert systems
than what is commonly used.

Most often, expert systems are developed with a
tool called an “expert system shell.” For the more
adventurous, an expert system might be developed
with Prolog, a language for artificial intelligence. Both
Prolog and expert system shells stem from technology
that is approximately 30 years old.1 There have been
updates to these platforms, such as GUI interfaces, XML
interfaces, and other “bells and whistles.” However,
the technology is still fundamentally old.

As an analogy, the current technology is akin to
updating a 30-year-old car with new paint (a gooey
interface), new upholstery, GPS, and so forth. However,
the car is fundamentally still a 30-year-old car. It may be
in far better shape than another 30-year-old car without
the updates, but it cannot compete from an engineering
perspective with current models.2 Similarly, the reason-
ing power of current expert system technology cannot
compete with the reasoning power of the state of the art
in logic programming. These advances that have taken
place in the logic programming community since the
advent of Prolog and expert system shells include: a
well developed theory of multiple forms of negation,
an understanding of open domains, and the closed
world assumption, default reasoning with exceptions,
reasoning with respect to time (i.e., a solution to the
frame problem and introspection with regard to previ-
ous beliefs), reasoning about actions, introspection, and
maintaining multiple views of the world simultaneously
(i.e., reasoning with uncertainty).

This article examines a family of logic programming
languages. This article in conjunction with a companion
article this volume, Knowledge Representation That
Can Empower Expert Systems, suggest that logic
programs employing recent advances in semantics and

in knowledge representation provide a more robust
framework in which to develop expert systems. The
author has successfully applied this paradigm and these
ideas to financial applications, security applications,
and enterprise information systems.

Background

Logic programming presents us with an excellent tool
to develop a variety of intelligent systems. While there
are still serious issues to be addressed and while there
may be additional nonlogical techniques to comple-
ment logic-based systems, it is almost a self-evident
truth that logic will form the cornerstone of any serious
machine intelligence in the future. Consider that our
goal is to build “HAL,” the all-knowing, self-sufficient
computer of the science-fiction movies.3 To this end,
it behooves us to understand, use, and further refine
this paradigm.

In this article we shall present a family of logic
programming languages called the Stable Model Se-
mantics (Gelfond & Lifschitz, 1988, 1991), or more
recently known (and hereafter known) as the Answer
Set Semantics. These languages are purely declarative
languages with roots in logic programming (Kowalski,
1974, 1979), the syntax and semantics of standard
Prolog (Clark, 1978; Colmerauer, Kanoui, Paser, &
Russel, 1973) and in the work on nonmonotonic logic
(Moore, 1985; Reiter, 1980).

These semantics are arguably the most well-known
and most well-developed semantics in logic program-
ming. That there are other competing semantics is not
of concern. Other semantics will differ from the Answer
Set Semantics primarily at the extremes. Also, the
Answer Set Semantics is conservative: a system built
upon these semantics believes only what it is forced to
believe. Further, the Answer Set Semantics is the most
popular semantics in the logic programming research
community.

594

Logic Programming Languages for Expert Systems

It is our goal that the languages presented here and
the ideas presented in the companion article will be
adopted by the practitioner community. The material
presented here is self-contained. It is hoped that all
that is required is only a very careful reading in order
to understand this very powerful paradigm.

logIc ProgrammIng languages4

In this section, an overview of a family of five logic
programming languages will be given. These languages
do not encompass the entire field of logic program-
ming, but rather represent a particular flavor of logic
programming: the answer set semantics. Not only is
this “flavor” the author’s own preference, but it also
seems to be the preference of the logic programming
community at large.

That there are five languages discussed is not
important, and the names of these languages are not
important. They are presented here only to show a
progression from simple to complex reasoning. They
are presented for pedagogical purposes. At the end of
this section, one of these languages will be identified
as the preferred language for general use.

These five languages are not competing languages.
Rather, these languages form a strict hierarchy of
expressiveness and complexity. Each level of this
hierarchy is more expressive than the previous level.
Each level completely subsumes the expressiveness
of the previous level.

overview

Figure 1 presents the hierarchy of stable model lan-
guages. The topmost part of the figure represents the
highest, most expressive, and most complex level of
the hierarchy. Conversely, the lowest part of Figure
1 represents the lowest, least expressive, and least
complex level of the hierarchy. That which can be
expressed at the lower levels can be expressed in each
of the higher levels.

For a moment, let us relate current technology with
this hierarchy. Rule-based systems, expert system
shells, and Prolog slightly blur the boundaries, but
belong to the class of programs at the lowest level. At
best, they could be classified as deductive databases.
(Some hair-splitting issues we want to avoid begin to
arise here. As an example, Prolog does have an operator

for negation as failure, which is a feature belonging to
the next highest level. Yet, Prolog does not properly
or completely implement the semantics of negation
as failure.)

deductive databases

The simplest semantics that we will discuss are deduc-
tive databases (Gelfond & Lifschitz, 1988; Lifschitz,
1989).5 This language is important because this is the
foundation upon which other logic programming lan-
guages are built. It is also the foundation upon which
Prolog and rule-based systems were built.

Definition: A deductive database is a set of rules

of the form:

 A0 ← A1, ..., An

where Ai are ground atoms, n >_ 0.

A0 is called the head of the rule, and A1, ..., An is
called the body of the rule. The Ai in the body of the
rule is treated as a conjunction. The intended meaning
of such a rule is that if the body is true (that is, if each Ai
in the body is true), then the head is true. It is a rule of
deduction. We deduce the head, if the body is true.

Let us digress a moment and explain in loose terms
some of these concepts used in the definition above. An

Epistemic Specifications

Disjunctive Logic Programs

Extended Logic Programs

Deductive Databases Monotonic Deductive Db

Figure 1. Hierarchy of languages

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/logic-programming-languages-expert-systems/11299

Related Content

Numerical Investigation of Turbulent Flow Transport Through a Corrugated Microtube
Amalendu Ranaand Motahar Reza (2023). Constraint Decision-Making Systems in Engineering (pp. 265-276).

www.irma-international.org/chapter/numerical-investigation-of-turbulent-flow-transport-through-a-corrugated-

microtube/316961

Selection of Green Suppliers Based on GSCM Practices: Using Fuzzy MCDM Approach in an

Electronics Company
Akshay Kumar Uppala, Rishabh Ranka, J. J. Thakkar, Manupati Vijay Kumarand Shilpa Agrawal (2017).

Handbook of Research on Fuzzy and Rough Set Theory in Organizational Decision Making (pp. 355-375).

www.irma-international.org/chapter/selection-of-green-suppliers-based-on-gscm-practices/169495

Third Party Logistics: Key Success Factors and Growth Strategies
Omprakash K. Gupta, S. Samar Aliand Rameshwar Dubey (2011). International Journal of Strategic Decision

Sciences (pp. 29-60).

www.irma-international.org/article/third-party-logistics/60530

Development of System Typology and Choice of Preferred Simulation Modelling Methods for DSS-

Toolkit
Oleg Nikolaevich Dmitriev (2022). International Journal of Decision Support System Technology (pp. 1-25).

www.irma-international.org/article/development-of-system-typology-and-choice-of-preferred-simulation-modelling-methods-

for-dss-toolkit/286679

Social Media in Business Decisions of MSMEs: Practices and Challenges
Vikas Kumar, Pooja Nandaand Samira Tawangar (2022). International Journal of Decision Support System

Technology (pp. 1-12).

www.irma-international.org/article/social-media-in-business-decisions-of-msmes/286686

http://www.igi-global.com/chapter/logic-programming-languages-expert-systems/11299
http://www.igi-global.com/chapter/logic-programming-languages-expert-systems/11299
http://www.irma-international.org/chapter/numerical-investigation-of-turbulent-flow-transport-through-a-corrugated-microtube/316961
http://www.irma-international.org/chapter/numerical-investigation-of-turbulent-flow-transport-through-a-corrugated-microtube/316961
http://www.irma-international.org/chapter/selection-of-green-suppliers-based-on-gscm-practices/169495
http://www.irma-international.org/article/third-party-logistics/60530
http://www.irma-international.org/article/development-of-system-typology-and-choice-of-preferred-simulation-modelling-methods-for-dss-toolkit/286679
http://www.irma-international.org/article/development-of-system-typology-and-choice-of-preferred-simulation-modelling-methods-for-dss-toolkit/286679
http://www.irma-international.org/article/social-media-in-business-decisions-of-msmes/286686

