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IntroductIon

Rough set theory (RST), since its introduction in Pawlak 
(1982), continues to develop as an effective tool in clas-
sification problems and decision support. In the majority 
of applications using RST based methodologies, there 
is the construction of ‘if .. then ..’ decision rules that 
are used to describe the results from an analysis. The 
variation of applications in management and decision 
making, using RST, recently includes discovering the 
operating rules of a Sicilian irrigation purpose reservoir 
(Barbagallo, Consoli, Pappalardo, Greco, & Zimbone, 
2006), feature selection in customer relationship man-
agement (Tseng & Huang, 2007) and decisions that 
insurance companies make to satisfy customers’ needs 
(Shyng, Wang, Tzeng, & Wu, 2007).

As a nascent symbolic machine learning technique, 
the popularity of RST is a direct consequence of its set 
theoretical operational processes, mitigating inhibiting 
issues associated with traditional techniques, such as 
within-group probability distribution assumptions 
(Beynon & Peel, 2001). Instead, the rudiments of the 
original RST are based on an indiscernibility relation, 
whereby objects are grouped into certain equivalence 
classes and inference taken from these groups. Char-
acteristics like this mean that decision support will 
be built upon the underlying RST philosophy of “Let 
the data speak for itself” (Dunstch & Gediga, 1997). 
Recently, RST was viewed as being of fundamental 
importance in artificial intelligence and cognitive sci-
ences, including decision analysis and decision support 
systems (Tseng & Huang, 2007).

One of the first developments on RST was through 
the variable precision rough sets model (VPRSβ), 
which allows a level of mis-classification to exist in 
the classification of objects, resulting in probabilistic 
rules (see Ziarko, 1993; Beynon, 2001; Li and Wang, 
2004). VPRSβ has specifically been applied as a poten-
tial decision support system with the UK Monopolies 
and Mergers Commission (Beynon & Driffield, 2005), 
predicting bank credit ratings (Griffiths & Beynon, 

2005) and diffusion of medicaid home care programs 
(Kitchener,  Beynon, & Harrington, 2004).

Further developments of RST include extended 
variable precision rough sets (VPRSl,u), which infers 
asymmetric bounds on the possible classification and 
mis-classification of objects (Katzberg & Ziarko, 1996), 
dominance-based rough sets, which bases their approach 
around a dominance relation (Greco, Matarazzo, & 
Słowiński, 2004), fuzzy rough sets, which allows the 
grade of membership of objects to constructed sets 
(Greco, Inuiguchi, & Słowiński, 2006), and probabilistic 
bayesian rough sets model that considers an appropriate 
certainty gain function (Ziarko, 2005).

A literal presentation of the diversity of work on RST 
can be viewed in the annual volumes of the Transactions 
on Rough Sets (most recent year 2006), also the annual 
conferences dedicated to RST and its developments (see 
for example, RSCTC, 2004). In this article, the theory 
underlying VPRSl,u is described, with its special case 
of VPRSβ used in an example analysis. The utilisation 
of VPRSl,u, and VPRSβ, is without loss of generality 
to other developments such as those referenced, its 
relative simplicity allows the non-proficient reader the 
opportunity to fully follow the details presented.

Background

The background to the whole range of RST based 
methodologies is beyond the scope of a single book 
chapter, here one line of development is described, and 
is illustrative of RST and its evolution. Moreover, the 
original RST, VPRSβ, and VPRSl,u methodologies are 
discussed and how they are related further exposited 
(see Beynon, 2003). Central to the RST associated 
methodologies is the information system, in the form 
of a decision table.

A decision tables is made up of a set of objects (U), 
each characterized by a set of categorical condition 
attributes (C) and classified by a set of categorical 
decision attributes (D). A value denoting the nature of 
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excluded from the classification to Z (not less than l), 
which is given by:

(l, u)-boundary region of the set Z ⊆ U and P ⊆ C: 
,l u

PBND (Z) = Pr( | )il Z X β< < {Xi ∈ E(P)}.

From these definitions, the objects contained in a 
decision table can be partitioned into one of the three 
defined approximation regions. Further, to these approx-
imation regions certain measures can be constructed 
with respect to the objects in the decision table.

The one measure considered here is a direct progres-
sion from RST and VPRSβ, and concerns the quality 
of classification (QoC). This measure relates to the 
proportion of objects in a decision table, which are 
included in the associated u-positive regions. That is, 
the proportion of objects that are classified to single 
decision classes. With VPRSl,u, for all the objects in 
the set Z ⊆ U, the quality of classification (l, u)-QoC 
(γl,u(P, D)) is given by:

γ l,u(P, D) = ( )card( ( ))
card( )

u
Z E D PPOS Z

U
∈

,

where P ⊆ C. It is noted, the measure γ l,u(P, D) is 
dependent only on the u boundary value, because it is 
concerned with objects that are classified to a single 
decision class. The γ l,u(P, D) measure with the l and u 
values means that for the objects in a data set, a VPRS 
analysis may define them in one of three states; not 
classified, correctly classified, and mis-classified. 

The approximation regions describing VPRSl,u are 
general definitions that also describe the previously in-
troduced RST and VPRSβ methodologies. For the original 
RST, its approximation regions are described by the choice 
of l and u, when l=0 and u=1, subsequently defined 1

PPOS , 
0
PNEG , and 0,1

PBND . For VPRSβ, the choice of l and u is with 
respect to the single value β and is when β = u = 1 − l ∈ 
(0.5, 1], with the approximation regions defined PPOS β,  

1
PNEG β− , and 1 ,

PBND β β− .
The measures described here highlight the generality 

implicit in VPRSl,u. That is, the allowance for the l and u 
values to take any values over the [0, 1] domain, subject 
to l < u. Generally, the marginal effect on the described 
measures of object classification due to changes in either 
of the l and u values is difficult to perceive. This lack 
of perception was identified in Beynon (2003), who 
introduced the (l, u)-graph, see Figure 1.

an attribute to an object is called a descriptor. From 
C and D, certain equivalence classes (condition and 
decision) are constructed through the utilisation of an 
indiscernibility relation (unlike, for example, the use 
of the dominance relation in dominance based rough 
sets, see Greco et al., 2004). Using an indiscernibility 
relation, a condition class contains objects that have 
the same categorical condition attribute values (similar 
for a decision class). The use of categorical data here 
means that a level of data discretisation is necessary 
if continuous data are present (see Beynon & Peel, 
2001).

Within the original RST, the decision rules con-
structed are deterministic, meaning they do not allow 
for a level of mis-classification of objects to a decision 
class. That is, for a condition class given a classifica-
tion, the contained objects are all classified to the same 
decision class. RST was developed to allow a level of 
mis-classification, by the inclusion of the β-threshold 
value of necessary majority inclusion in the condition 
classes given a classification (to the same decision class), 
called the variable precision rough sets model (VPRSβ). 
This was further developed with the extended variable 
precision rough sets model (VPRSl,u), where asymmetric 
bounds l and u are used to control objects given and not 
given a classification to a decision class. The utilisa-
tion of these bounds, l and u, enable the construction 
of certain set approximations (regions), including the 
u-positive region u

PPOS  (Z) of a set, defined by:

u-positive region of the set Z ⊆ U and P ⊆ C: u
PPOS

(Z) = Pr( | )iZ X u≤ {Xi ∈ E(P)},

where E(⋅) denotes an equivalence class (E(P)—condi-
tion classes from the set of condition attributes P), and 
u reflects the least acceptable degree of the conditional 
probability Pr(Z | Xi) of objects in the condition class Xi, 
to include Xi in the u-positive region for Z. An analogous 
l-negative region l

PNEG (Z) is given by:

l-negative region of the set Z ⊆ U and P ⊆ C: l
PNEG

(Z) = Pr( | )iZ X l≤ {Xi ∈ E(P)},

where l reflects the largest acceptable degree of the 
conditional probability Pr(Z | Xi) to include the condi-
tion class Xi in the l-negative region. A (l, u)-boundary 
region ,l u

PBND (Z) represents those condition classes 
that cannot be classified to Z ⊆ U with sufficiently 
high confidence (not greater than u) and cannot be 

≥

u
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