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ABSTRACT

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained
Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization
(MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this
chapter, the authors present a constrained MOPSO in which the information related to particles’ infea-
sibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions
and to improve the quality of the optimal solution found. The updating of personal best archive is based
on the particles’ Pareto ranks and their constraint violations. The infeasible global best archive is ad-
opted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on
the personal bests’ and selected global bests’ infeasibility and feasibility statuses. The personal bests’
feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simula-
tion results indicate that the proposed constrained MOPSO is highly competitive in solving selected
benchmark problems.

INTRODUCTION optimization problems (COPs) or constrained

multiobjective optimization problems (CMOPs) if
Inreal-world applications, most optimization prob- more than one objective functionisinvolved. Com-
lems are subject to various types of constraints. prehensive surveys (Michalewicz & Schoenauer,
These problems are known as the constrained 1996; Mezura-Montes & CoellCoello, 2006) show
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a variety of constraint handling techniques have
been developed to address the deficiencies of evo-
lutionary algorithms (EAs), in which, their original
design are unable to deal with constraints in an
effective manner. These techniques are mainly
targeted at EAs, particularly genetic algorithms
(GAs), to solve COPs (Runarsson & Yao, 2005;
Takahama & Sakai, 2006; Cai & Wang, 2006;
Oyama et al.,2007; Wang et al.,2007, 2008; Tes-
sema & Yen, 2009) and CMOPs (Binh & Korn,
1997; Fonseca & Fleming, 1998; CoelloCoello
& Christiansen, 1999; Deb et al., 2002; Jimenez
et al., 2002; Kurpati et al., 2002; Chafekar et al.,
2003; Ray & Won, 2005; Hingston et al., 2006;
Geng et al., 2006; Zhang et al., 2006; Harada et
al., 2007; Woldesenbet et al., 2009). During the
past few years, due to the success of particle swarm
optimization (PSO)in solving many unconstrained
optimization problems, research on incorporating
existing constrainthandling techniques in PSO for
solving COPsiis steadily gaining attention (Parso-
poulus & Vrahatis, 2002; Pulido & CoelloCoello,
2004; Zielinski & Laur, 2006; Lu & Chen, 2006;
Liang & Suganthan, 2006; Wei & Wang, 2006; He
& Wang, 2007; Cushman, 2007; Liu et al., 2008;
Li et al., 2008;). Nevertheless, many real world
problems are often multiobjective in nature. The
ultimate goal is to develop multiobjective par-
ticle swarm optimization algorithms (MOPSOs)
that effectively solve CMOPs. In addition to this
perspective, the recent successes of MOPSOs
in solving unconstrained MOPs have further
motivated us to design a constrained MOPSO to
solve CMOPs.

Considering a minimization problem, the
general form of the CMOP with £ objective func-
tions is given as follows:

Minimize f<x) = [fl <x),ﬁZ <x),...,fk (X)},
xn} e R

X:[xl,xw...,

subject to

i=12...,m; (2a)
j=m+1L.., p; (2b)
1=12,...,n, (2¢)

where x is the decision vector of n decision vari-

max

ables. Its upper (2 ) and lower (a:z”i“ ) bounds

i

in Equation (2¢) define the search space, S C R".
9, (x) represents the jth inequality constraint,

while hj (x) represents the jth equality constraint.

The inequality constraints that are equal to zero,
ie., 9, (x *) = 0, at the global optimum (x *) of
agiven problem are called active constraints. The
feasible region ( F' C S') is defined by satisfying
all constraints (Equations (2a)-(2b)). A solution
in the feasible region (x € F') is called a feasible
solution, otherwise it is considered an infeasible
solution.

A general MOPSO algorithm consists of the
five key procedures: 1) particles’ flight (PSO
equations), 2) particles’ personal best (pbest) up-
dating procedure, 3) particles’ global best archive
(Gbest) maintenance method, 4) particles’ global
best selection scheme, and 5) mutation operation.
In the proposed design, we integrate the particles’
dominance relationship, and their constraint viola-
tion information to each of these key procedures.
The constraint violation information is formulated
by two simple metrics that represent the particles’
feasibility status individually and as a whole. The
final goal is to solve the CMOPs by influencing
the particles’ search behavior in such that will
lead them towards the feasible regions and the
optimal Pareto front.

The remaining structure of this chapter is ar-
ranged as follows. A review of relevant works in
this area is presented in Literature Survey section.
The proposed constrained MOPSO (so called rank
and constraint violation MOPSO or RCYMOPSO)
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