
355

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 15

DOI: 10.4018/978-1-4666-6178-3.ch015

Service-Driven
Computing with APIs:
Concepts, Frameworks, and

Emerging Trends

ABSTRACT

While both SOAP and REST have been used widely to implement Web services and software integration,
over time REST has emerged as the predominant approach. REST provides developers with a lower barrier
to entry for implementation and greater development flexibility than SOAP. Its architectural conventions
and best practices can be integrated into Web services incrementally as opposed to the all-or-nothing
adoption of SOAP. In order to achieve generality, SOAP standards are extensive, rigid, and complex. This
complexity can lead to implementations that introduce significant overhead on the network bandwidth
consumption, execution times, and throughput of SOAP services, especially in the emerging resource-
restricted mobile realm. This chapter provides an overview of the logical and physical design of modern
Web services and discusses the strengths and weaknesses of the predominant styles. It provides evidence
and reasoning behind the emergence of REST as the leader for the development of next-generation Web
APIs and services. The chapter also delineates the key technologies that underlie REST and describes
emerging and future research directions in support of REST-based APIs and service development.

Hiranya Jayathilaka
University of California – Santa Barbara, USA

Chandra Krintz
University of California – Santa Barbara, USA

Rich Wolski
University of California – Santa Barbara, USA

356

Service-Driven Computing with APIs

INTRODUCTION

Web services (W3C, 2004b) simplify the develop-
ment of network-accessible distributed applica-
tions by combining the ubiquity of the Internet
with familiar protocols of the World Wide Web
(WWW), well-defined interfaces, and easily
integrated software architectures. They expose
functionality, business logic, and data as network-
enabled modules, which can be consumed over
the network by client applications written in a
variety of programming languages. The Web
service design and development model which
utilizes Service Oriented Architecture (SOA),
describes how to architect, reuse, and integrate
Web service modules as the building blocks for
new systems and services (Dan, Johnson, & Car-
rato, 2008). SOA is used increasingly for a wide
range of application domains including business
collaboration and productivity, Web/mobile access
and communications, large scale data integration
and analysis, multi-player games, and Cloud
computing (compute resources, software, and
data “as-a-service”) (Haines & Haseman, 2009).
Many industry technology leaders (e.g., Google,
Yahoo, Amazon, eBay, and Facebook) use SOA
as the basis of their products, which they expose
to external developers for integration with new
products, services, and platforms.

Systems implemented using Web services and
SOA principles tend to be loosely coupled and
resilient to change, failure, and interruption (Of-
fermann, Hoffmann, & Bub, 2009). The modular
nature of Web services promotes separation of
concerns, and makes it easier to design and reason
about distributed applications. In addition, Web
service encapsulation enables developers to choose
the most appropriate programming language and
technologies for their implementations and to
isolate change across complex systems. This ser-
vice-driven approach for developing applications
minimizes code duplication and eases the assembly
of complex systems, thereby greatly improving
developer productivity over non-service-oriented

methodologies. By composing an application from
existing services that encapsulate common tasks
such as database access, logging, and security;
application developers can work at a higher level
of abstraction, thereby saving development and
debugging time. In particular, the reuse of services
as modules increases reliability and stability in
the resulting software system, since testing and
quality assurance can focus on integration rather
than on the constituent services.

Logically, a Web service consists of four pri-
mary components:

• An architecture that governs the logical or-
ganization of data, code, and communica-
tion of the service.

• Abstraction that hides the implementation
details of the service and that enables the
service architect to control the functional-
ity that is exposed to users and other pro-
grams (service clients).

• An implementation that contains program
code for computation and data manipula-
tion that is executed when a client accesses
the service.

• An application-programming interface
(API) that defines and controls the op-
erations that clients perform to access the
implementation as specified by the abstrac-
tion layer.

The architecture and abstraction are the logical
constructs of Web service design and the API and
implementation comprise its physical manifesta-
tion. From an implementation perspective, APIs
decouple the functionality necessary to allow
controlled access to a service from the technologies
that are used to implement the functionality of the
service itself (Beyer, Chakrabarti, & Henzinger,
2005). That is, the API preserves the service
functionality for clients accessing the service
while the technologies used to implement it can
change, particularly as technological advances
reduce implementation costs. Similarly, it is pos-

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/service-driven-computing-with-apis/115436

Related Content

Software Development and Best Practices: Introduction to Programming Languages Used in

Numerical Methods
Ahmed Ibrahim Turki, Sushma Allur, Durga Praveen Deeviand Punitha Palanisamy (2024). Coding

Dimensions and the Power of Finite Element, Volume, and Difference Methods (pp. 151-171).

www.irma-international.org/chapter/software-development-and-best-practices/352311

Security Patterns: Comparing Modeling Approaches
Armstrong Nhlabatsi, Arosha Bandara, Shinpei Hayashi, Charles Haley, Jan Jurjens, Haruhiko Kaiya,

Atsuto Kubo, Robin Laney, Haralambos Mouratidis, Bashar Nuseibeh, Thein Tun, Hironori Washizaki,

Nobukazu Yoshiokaand Yijun Yu (2011). Software Engineering for Secure Systems: Industrial and

Research Perspectives (pp. 75-111).

www.irma-international.org/chapter/security-patterns-comparing-modeling-approaches/48407

Integrating Access Control into UML for Secure Software Modeling and Analysis
Thuong Doan, Steven Demurjian, Laurent Micheland Solomon Berhe (2010). International Journal of

Secure Software Engineering (pp. 1-19).

www.irma-international.org/article/integrating-access-control-into-uml/39006

Deep Learning Model for Dynamic Hand Gesture Recognition for Natural Human-Machine

Interface on End Devices
Tsui-Ping Chang, Hung-Ming Chen, Shih-Ying Chenand Wei-Cheng Lin (2022). International Journal of

Information System Modeling and Design (pp. 1-23).

www.irma-international.org/article/deep-learning-model-for-dynamic-hand-gesture-recognition-for-natural-human-

machine-interface-on-end-devices/306636

Migrating from Assembly to C
 (2017). Microcontroller System Design Using PIC18F Processors (pp. 72-93).

www.irma-international.org/chapter/migrating-from-assembly-to-c/190445

http://www.igi-global.com/chapter/service-driven-computing-with-apis/115436
http://www.irma-international.org/chapter/software-development-and-best-practices/352311
http://www.irma-international.org/chapter/security-patterns-comparing-modeling-approaches/48407
http://www.irma-international.org/article/integrating-access-control-into-uml/39006
http://www.irma-international.org/article/deep-learning-model-for-dynamic-hand-gesture-recognition-for-natural-human-machine-interface-on-end-devices/306636
http://www.irma-international.org/article/deep-learning-model-for-dynamic-hand-gesture-recognition-for-natural-human-machine-interface-on-end-devices/306636
http://www.irma-international.org/chapter/migrating-from-assembly-to-c/190445

