
718

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 29

Reliability Modeling and
Assessment for Open

Source Cloud Software:
A Stochastic Approach

ABSTRACT

Software development based on the Open Source Software (OSS) model is being increasingly accepted
to stand up servers and applications. In particular, Cloud OSS is now attracting attention as the next
generation of software products due to cost efficiencies and quick delivery. This chapter focuses on the
software reliability modeling and assessment for Cloud computing infrastructure software, especially
open source software, such as OpenStack and Eucalyptus. In this chapter, the authors introduce a new
approach to the Jump diffusion process based on stochastic differential equations in order to consider
the interesting aspect of the numbers of components and users in the reliability model. In addition, the
authors consider the network traffic of the Cloud in the reliability modeling and integrate the reliability
model with a threshold-based neural network approach that estimates network traffic. Actual software
fault-count data are analyzed in order to show numerical examples of software reliability assessment.
This chapter also illustrates how the proposed method of reliability analysis can assist in quality im-
provement in Cloud computing software.

Yoshinobu Tamura
Yamaguchi University, Japan

Shigeru Yamada
Tottori University, Japan

DOI: 10.4018/978-1-4666-6178-3.ch029

719

Reliability Modeling and Assessment for Open Source Cloud Software

INTRODUCTION

In the early days of computing, many software
applications were produced in non-distributed
development environments (such as Mainframes).
In such environments, software applications were
highly dependent on the health of the particular
host system. For instance, applications were
down when the host computer was down. Since
the 1980s, personal computers have penetrated
into our daily lives, taking us away from the de-
pendence on conventional mainframe machines.
Personal computers have gradually provided better
price/performance ratios; moreover the personal
computer revolution has enabled software de-
velopment to occur more cost effectively. UNIX
workstations and personal computers have helped
to reduce the cost of development and execution
of software applications.

Architecture methodologies such as client-
server and component-based architectures facili-
tated the development of sophisticated applications
using flexible communications and interfacing
models. This led to the evolution of distributed
computing environments that enabled scalability
and efficiencies in software applications. The
prevalence of service-oriented architecture en-
abled the development of applications as individual
services that could be composed dynamically into
business applications to satisfy required business
functions.

However, distributed service-driven comput-
ing that involved the dynamic composition of
distributed components, increased the complexity
of the applications and introduced more points
of dependencies and failures in the system. The
increased system complexity made their testing
and validation more difficult and had a direct
impact on software reliability. Thus, it became
significant to quantitatively assess the reliability
of software systems in distributed environments
to maintain application quality and reliability.

It has become more difficult for software
developers to produce highly-reliable software
systems efficiently, because of the diversified
and complicated software requirements that are
implemented in software products. Thus, it seems
necessary to control the software development
process in terms of reliability, cost, and delivery
time. The typical software development process
used in enterprises is the waterfall model (Yamada,
2011). This model is used in many software
development projects, especially, in large-scale
software development such as distributed develop-
ment environments. In recent years, various other
software development methodologies such as the
agile development model, V-model, etc., are be-
ing increasingly used for developing distributed
software. In the last phase of the development
process, software testing phase is carried out to
detect and fix software faults introduced by human
work prior to its release for operational use. The
software faults that cannot be detected and fixed
remain in the released software system after the
testing phase.

The proliferation of Internet access around
the world in recent years has increased public
awareness of Web-based online interactive ap-
plications. Software developed based on the Open
Source Software (OSS) model is being increas-
ingly accepted by enterprises to stand up servers
and applications. In the OSS model, individual
components are developed by different developers
using a distributed development paradigm. Open
Source projects such as GNU/Linux Operating
System, Apache HTTP server, etc, attest to the
successful software delivery in the distributed
development model used in open source projects.

In particular, Cloud OSS is now attracting
attention as the next-generation of software prod-
ucts due to cost efficiencies and quick delivery.
Implementation of Cloud computing environments
using open source software such as OpenStack,
Eucalyptus, OpenNebula, OpenShift, etc., is be-

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/reliability-modeling-and-assessment-for-open-

source-cloud-software/115451

Related Content

Design Diagrams as Ontological Sources: Ontology Extraction and Utilization for Software Asset

Reuse
Kalapriya Kannanand Biplav Srivastava (2009). Software Applications: Concepts, Methodologies, Tools,

and Applications (pp. 1250-1279).

www.irma-international.org/chapter/design-diagrams-ontological-sources/29445

Formal Analysis of Database Trigger Systems Using Event-B
Anh Hong Le, To Van Khanhand Truong Ninh Thuan (2021). International Journal of Software Innovation

(pp. 158-173).

www.irma-international.org/article/formal-analysis-of-database-trigger-systems-using-event-b/268330

Adaptive Neural Control for Unknown Nonlinear Time-Delay Fractional-Order Systems With

Input Saturation
Farouk Zouariand Amina Boubellouta (2018). Advanced Synchronization Control and Bifurcation of Chaotic

Fractional-Order Systems (pp. 54-98).

www.irma-international.org/chapter/adaptive-neural-control-for-unknown-nonlinear-time-delay-fractional-order-systems-

with-input-saturation/204797

Software Design
Rachita Misra, Chhabi Rani Panigrahi, Bijayalaxmi Pandaand Bibudhendu Pati (2018). Application

Development and Design: Concepts, Methodologies, Tools, and Applications (pp. 18-56).

www.irma-international.org/chapter/software-design/188201

Understanding the Role of Use Cases in UML: A Review and Research Agenda
Brian Dobingand Jeffrey Parsons (2002). Successful Software Reengineering (pp. 111-128).

www.irma-international.org/chapter/understanding-role-use-cases-uml/29972

http://www.igi-global.com/chapter/reliability-modeling-and-assessment-for-open-source-cloud-software/115451
http://www.igi-global.com/chapter/reliability-modeling-and-assessment-for-open-source-cloud-software/115451
http://www.irma-international.org/chapter/design-diagrams-ontological-sources/29445
http://www.irma-international.org/article/formal-analysis-of-database-trigger-systems-using-event-b/268330
http://www.irma-international.org/chapter/adaptive-neural-control-for-unknown-nonlinear-time-delay-fractional-order-systems-with-input-saturation/204797
http://www.irma-international.org/chapter/adaptive-neural-control-for-unknown-nonlinear-time-delay-fractional-order-systems-with-input-saturation/204797
http://www.irma-international.org/chapter/software-design/188201
http://www.irma-international.org/chapter/understanding-role-use-cases-uml/29972

