77

Chapter 33

Cloud-Enabled Software
Testing Based on Program
Understanding

Chia-Chu Chiang
University of Arkansas at Little Rock, USA

Shucheng Yu
University of Arkansas at Little Rock, USA

ABSTRACT

Cloud computing provides an innovative technology that enables Software as a Service (SaaS) to its
customers. With cloud computing technologies, a suite of program understanding tools is suggested to
be deployed in a cloud to aid the generation of test cases for software testing. This cloud-enabled service
allows customers to use these tools through an on-demand, flexible, and pay-per-use model. Lastly, the
issues and challenges of cloud computing are presented.

INTRODUCTION

The quality of software testing lies in the use of
effective test cases. Creating effective test cases
requires the in-depth study of the application
for which test cases are being generated. In this
chapter, a suite of tools developed to aid the
understanding of programs is suggested to be
hosted on a cloud with the innovative technol-
ogy of cloud computing. This suite of tools on
the cloud provides a cloud-enabled service to
customers without the need to purchase the tools.
Most importantly, customers can use the service

DOI: 10.4018/978-1-4666-6539-2.ch033

through the on-demand, flexible, and pay-per-use
model. The purpose of this chapter is to propose
a technical solution for designing a cloud-based
environment that enables detailed understanding
of the programs in the portfolio and further aids
the generation of test cases for software testing.
This chapter is organized as follows: First,
the needs of program understanding for software
testing are explained. Following that, reverse
engineering techniques for program comprehen-
sion are briefly overviewed. A suite of automated
program understanding tools is presented. Then,
a cloud-based platform with its implementation

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Cloud-Enabled Software Testing Based on Program Understanding

alternatives for hosting the tools is given. Later,
the issues and challenges of cloud computing are
presented. Customers should be aware that cloud
computing has limitations. They should carefully
evaluate these trade-offs before making decisions
to migrate their proprietary programs into cloud
computing.

BACKGROUND ON PROGRAM
COMPREHENSION

Software testing serves to discover defects in
the software where the outputs do not meet the
expected results or fail to meet the user require-
ments. One essential activity of software testing
is creating test cases. Two major software testing
techniques that include white-box and black-
box testing are used to generate test cases. The
white-box testing generates the test cases from
the programs. The black-box testing generates
the test cases from the specifications and designs.
Test cases are not created from the source code.
For both software testing techniques, program
(specification) understanding is a key activity in
the testing process. Programmers can understand
a program by reading its documentation (such
as specification and design documents), reading
the source code, or just executing the program.
Reading the documents can either be effective or
misleading. Unfortunately, one of the major prob-
lems of documentation is keeping the documents
current to reflect the changes of the code. If the
documents are outdated, reading the documenta-
tion for program understanding is not a good idea.
Executing a program to understand the program’s
dynamic behavior can dramatically improve under-
standing which cannotbe assimilated from reading
the source code alone. However, the knowledge
of the program mainly lies in the source code.
Currently, programmers still count on reading the
source code to gain knowledge about a program.
Several reverse engineering techniques and tools

718

have been developed to help automate knowledge
extraction from the programs used for program
understanding (Bellay & Gall, 1997; Chikofsky &
Cross, 1990; Gannod & Cheng, 1999; Zvegintzov,
1997). The techniques of reverse engineering are
applied to automate program understanding by
analyzing a system (1) to identify the system’s
components, their interrelationships, and (2) to
create representations of the system in another
form or at a higher level of abstraction (Chikofsky
& Cross, 1990). The outputs of reverse engineering
include structure chart, module calling hierarchy,
datadictionary, data flow dependence, and control
flow dependence. The knowledge about the pro-
gramsisembedded in these artifacts. Programmers
gain the understanding of programs by reading
these artifacts.

Existing reverse engineering techniques mainly
work on code for white-box testing. These reverse
engineering techniques can be classified into two
categories: static and dynamic analyses. Static
analysis relies on code and its associated docu-
mentation that can be broken down into formal
and informal methods. A formal method generates
a formal specification in mathematical notations
such as logic, set, and axioms from source code
(Gannod & Cheng, 1996). An informal method
for reverse engineering can be classified into
two categories: plan-based and parsing-based
approaches. The plan-based approaches automate
the recognition of abstract concepts in source code
using alibrary of programming plan templates and
concepts with top-down and bottom-up search
strategies (Abd-El-Hafiz & Basili, 1996; Woods
& Yang, 1996). To date, industrial adoption of
formal methods is still limited. In addition, many
legacy systems have the problems of delocalized
plans caused by enhancements and patches as the
systems evolve (Bennett, 1995; Rugaber, Stirewalt,
& Wills, 1995). Therefore, most plan-based ap-
proaches are limited as well. The parsing-based
approach is usually applied to most programming
languages. A parsing-based approach analyzes the



11 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/cloud-enabled-software-testing-based-on-

program-understanding/119880

Related Content

Meeting Compliance Requirements while using Cloud Services

S. Srinivasan (2014). Security, Trust, and Regulatory Aspects of Cloud Computing in Business
Environments (pp. 127-144).
www.irma-international.org/chapter/meeting-compliance-requirements-while-using-cloud-services/100842

Fog Computing Quality of Experience: Review and Open Challenges
William Tichaona Vambe (2023). International Journal of Fog Computing (pp. 1-16).
www.irma-international.org/article/fog-computing-quality-of-experience/317110

An loT-Based Framework for Health Monitoring Systems: A Case Study Approach

N. Sudhakar Yadav, K. G. Srinivasaand B. Eswara Reddy (2019). International Journal of Fog Computing
(pp. 43-60).

www.irma-international.org/article/an-iot-based-framework-for-health-monitoring-systems/219360

Realm Towards Service Optimization in Fog Computing
Ashish Tiwariand Rajeev Mohan Sharma (2019). International Journal of Fog Computing (pp. 13-43).

www.irma-international.org/article/realm-towards-service-optimization-in-fog-computing/228128

Identity and Access Management in the Cloud Computing Environments

Manoj V. Thomasand K. Chandrasekaran (2016). Developing Interoperable and Federated Cloud
Architecture (pp. 61-90).
www.irma-international.org/chapter/identity-and-access-management-in-the-cloud-computing-environments/149691



http://www.igi-global.com/chapter/cloud-enabled-software-testing-based-on-program-understanding/119880
http://www.igi-global.com/chapter/cloud-enabled-software-testing-based-on-program-understanding/119880
http://www.irma-international.org/chapter/meeting-compliance-requirements-while-using-cloud-services/100842
http://www.irma-international.org/article/fog-computing-quality-of-experience/317110
http://www.irma-international.org/article/an-iot-based-framework-for-health-monitoring-systems/219360
http://www.irma-international.org/article/realm-towards-service-optimization-in-fog-computing/228128
http://www.irma-international.org/chapter/identity-and-access-management-in-the-cloud-computing-environments/149691

