
1722

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 87

Effort, Time, and Staffing
in Continually Evolving
Open-Source Projects

ABSTRACT

Scheduling and staffing are important management activities in software projects. In closed-source
software development, the relationships among development effort, time, and staffing have been well
established and validated: the development effort determines the development time and the best number of
developers that should be allocated to the project. However, there has been no similar research reported
in open-source projects. In this chapter, the authors study the development effort, development time,
and staffing in an open-source project, the Linux kernel project. Specifically, they investigate the power
law relations among development effort, development time, and the number of active developers in the
Linux kernel project. The authors find the power law relations differ from one branch to another branch
in the Linux kernel project, which suggests different kinds of management and development styles might
exist in different branches of the Linux kernel project. The empirical knowledge of software develop-
ment effort obtained in this study could help project management and cost control in both open-source
communities and closed-source industries.

1. INTRODUCTION

In software projects, scheduling and staffing are
important management activities. Over schedul-
ing and over staffing can result in the addition of
development cost. Under scheduling and under
staffing could result in delays of product delivery.
Therefore, in software projects, scheduling and
staffing are determined based on the estimated
development effort. Several formulas have been

proposed and validated to show the ideal relation-
ships among development effort, development
time, and the number of developers that should
be allocated to a project (Walston & Felix, 1977;
Putnam, 1978; Boehm, 1981).

However, most of the published work in this
area is performed on closed-source projects. Little
work has been done to study the relationship
among development effort, development time,
and the number of active developers in open-

Liguo Yu
Indiana University – South Bend, USA

DOI: 10.4018/978-1-4666-7230-7.ch087

1723

Effort, Time, and Staffing in Continually Evolving Open-Source Projects

source projects (Koch & Schneider, 2002; Koch
2008). Although open-source projects are loosely
organized and managed, it is worth of studying
their management styles to understand how open-
source projects self-organize to form their own
laws about development effort, development time,
and staffing in order to help project management
and cost control in both open-source communities
and closed-source industries.

The remainder of this chapter is organized
as follows. Section 2 reviews related work in
software effort estimation. Section 3 presents
the background knowledge of this study. Section
4 describes the data source and the data repre-
sentation. Section 5 presents the analysis and the
results. Conclusions appear in Section 6.

2. LITERATURE REVIEW

Software effort estimation is to predict the man-
power required to develop or maintain a software
product. Effort estimation is the basis for cost
estimation, time scheduling, and staff allocation.
Extensive research has been performed in this
area (Albrecht & Gaffney, 1983; Jeffery & Low,
1990). Basically, there are two types of effort
estimation method: expert judgment (Parkinson,
1957) and algorithmic models (Donelson, 1976).
In algorithmic models, COCOMO II is considered
the most successful approach (Boehm et al., 2000).
Since the introduction of these models, a lot of
following work has been performed in this area.

Some studies are reported to compare the
performance of different effort estimation mod-
els. For example, Jorgensen (1995) compared
different software maintenance effort prediction
models developed using regression analysis, neural
networks, and pattern recognition. He found the
most accurate estimations were achieved through
applying multiple regression and pattern recogni-
tion in the prediction models. Jeffery, Ruhe, and
Wieczorek (2000) compared the development cost
estimation differences of models using ordinary

least-squares regression and analogy-based esti-
mation. Menzies, Chen, Hihn, and Lum (2006)
applied heuristic rejection rules to comparatively
assess effort predictions generated from different
models.

Some studies are performed to improve the ac-
curacies of effort estimation models. For example,
Chulani, Boehm, and Steece (1999) proposed us-
ing Bayesian approach to calibrate and improve
cost estimation models, such as COCOMO II.
Idri, Kjiri, and Abran (2000) suggested improv-
ing COCOMO model with fuzzy logic. Reddy
and Raju (2009) recommended using Gaussian
Membership Function to determine the cost driv-
ers in order to improve the prediction accuracy.
Huang, Ho, Ren and Capretz (2007) proposed
improving the COCOMO effort estimation mode
using neuro-fuzzy approach.

Building cross-project effort estimation mod-
els has been the major line of study in this area.
Kitchenham and Mendes (2009) investigated the
comparative effort prediction models. Caivano,
Lanubile and Visaggio (2001) found that effort
estimation models are process-dependent and ac-
cordingly cannot be reused for other processes.
Maxwell, Wassenhove, and Dutta (1999) sug-
gested that software companies should develop
their own cost estimation models based on their
own experience in order to generate accurate
effort predictions. Menzies, Port, Chen, Hihn,
and Sherry (2005) found that effort estimation
models should be calibrated to local data us-
ing incremental holdout studies and predictions
based on the within-company model were not
significantly more accurate than those based on
the cross-company model.

Software maintenance and evolution is one of
the most important phases in software life cycle.
Building maintenance effort estimation model is
accordingly an important task for software engi-
neering researchers. Sneed (2004) presented an
effort model for software maintenance and evo-
lution based on separations of fixed and variable
cost. In a different study, Sneed (2005) described

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/effort-time-and-staffing-in-continually-evolving-

open-source-projects/120996

Related Content

Repositories with Public Data about Software Development
Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortazarand Megan Squire (2010). International Journal of

Open Source Software and Processes (pp. 1-13).

www.irma-international.org/article/repositories-public-data-software-development/44968

Dynamic Key-Based and Context-Aware Internet of Things Authentication Approach
Mihir Mehtaand Kajal Patel (2022). International Journal of Open Source Software and Processes (pp. 1-

15).

www.irma-international.org/article/dynamic-key-based-and-context-aware-internet-of-things-authentication-

approach/310939

A Multi-Step Process Towards Integrating Free and Open Source Software in Engineering

Education
K.G. Srinivasa, Ganesh Chandra Dekaand Krishnaraj P.M. (2021). Research Anthology on Usage and

Development of Open Source Software (pp. 389-397).

www.irma-international.org/chapter/a-multi-step-process-towards-integrating-free-and-open-source-software-in-

engineering-education/286584

Optimized Test Case Generation for Object Oriented Systems Using Weka Open Source

Software
Rajvir Singh, Anita Singhrovaand Rajesh Bhatia (2021). Research Anthology on Usage and Development

of Open Source Software (pp. 596-618).

www.irma-international.org/chapter/optimized-test-case-generation-for-object-oriented-systems-using-weka-open-

source-software/286595

Long-Term Analysis of the Development of the Open ACS Community Framework
Michael Aram, Stefan Kochand Gustaf Neumann (2017). Open Source Solutions for Knowledge

Management and Technological Ecosystems (pp. 111-145).

www.irma-international.org/chapter/long-term-analysis-of-the-development-of-the-open-acs-community-

framework/168981

http://www.igi-global.com/chapter/effort-time-and-staffing-in-continually-evolving-open-source-projects/120996
http://www.igi-global.com/chapter/effort-time-and-staffing-in-continually-evolving-open-source-projects/120996
http://www.irma-international.org/article/repositories-public-data-software-development/44968
http://www.irma-international.org/article/dynamic-key-based-and-context-aware-internet-of-things-authentication-approach/310939
http://www.irma-international.org/article/dynamic-key-based-and-context-aware-internet-of-things-authentication-approach/310939
http://www.irma-international.org/chapter/a-multi-step-process-towards-integrating-free-and-open-source-software-in-engineering-education/286584
http://www.irma-international.org/chapter/a-multi-step-process-towards-integrating-free-and-open-source-software-in-engineering-education/286584
http://www.irma-international.org/chapter/optimized-test-case-generation-for-object-oriented-systems-using-weka-open-source-software/286595
http://www.irma-international.org/chapter/optimized-test-case-generation-for-object-oriented-systems-using-weka-open-source-software/286595
http://www.irma-international.org/chapter/long-term-analysis-of-the-development-of-the-open-acs-community-framework/168981
http://www.irma-international.org/chapter/long-term-analysis-of-the-development-of-the-open-acs-community-framework/168981

