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Introduction: Diffusion Tensor 
Imaging 

Diffusion tensor magnetic resonance imaging (DT-
MRI), also known as diffusion tensor imaging (DTI), 
needs post processing by adequate image analysis and 
visualization tools. White matter tractography using 
DTI is becoming a routine MR technique to study white 
matter properties, connectivity, and alterations of fiber 
integrity due to pathology. The success of the method 
depends on the accuracy of the tracking algorithms. The 
disadvantage on the evaluation of such methods is that 
there is no gold standard regarding the true geometry 
of the brain anatomy or fiber bundles reconstructed in 
each particular case.

Considering the increasing number of reports on DTI 
post-processing research, it is observed that most of 
the methodology is applied only to real data, acquired 
from human or animal test subjects. This approach has 
the following drawbacks: (i) the true anatomy of each 
imaged subject is not known in detail, (ii) the image 
noise is of little control, (iii) cost of scanner time is 
usually high, (iv) the comparison of the methods and 
the results from different studies is difficult because 
the data has been acquired on various MR scanner 
hardware, and often scanned with different imaging 
protocols, and finally, (v) the test data is collected from 
different subjects, each having unique characteristics 
in gross anatomy and tissue micro-architecture. In or-
der to reduce these problems, a synthetic DTI dataset 
with known geometric and signal properties has been 
developed. 

The accuracy of white matter anatomical maps 
obtained by DTI is still unclear due to the general 
inability of the diffusion tensor model describing a 
single voxel with multiple orientational maxima. Veri-
fication and validation of the synthetic data analysis’ 
aims to elucidate the white matter fiber tractography 
in eliminating the uncertainty areas and understanding 
the connectivity more clearly and reliable. 

A model must describe how water diffuses in the 
synthetic dataset. For simplicity, we have in this work 
considered only two very basic models. In this work 
two separate models with different geometric proper-
ties characterized by anisotropic Gaussian diffusion are 
specified. These models are sampled and their output is 
similar to those obtained from MR scanners are gener-
ated. The efficient calculation of the diffusion tensor is 
achieved from that output. It is used to generate several 
common measures and visualizations describing Gauss-
ian water diffusion. The project covers the geometric 
model, discrimination, sampling, tensor calculation, 
parameter calculation, and the visualization. 

Background

DT-MRI Pulse Sequences: Encoding for 
Diffusion

Diffusion-weighted images are the raw data source 
used to calculate the diffusion tensor. In DTI, each 
voxel is assigned a tensor that describes local water 
diffusion. The relationship between the loss of phase 
coherence in the transverse spin radio frequency (RF) 
signal S0 and Si , and the gradient pulse g=[gix giy giz]

T 

with i
T
i gDg  the apparent diffusivity along gi is given 

by the Stejskal-Tanner equation (Stejskal, 1965):
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A Stejskal-Tanner imaging sequence may be imple-
mented by adding diffusion encoding gradients to 
standard anatomical MRI pulse sequences (Ciccarelli 
et al., 2003).

By systematically applying diffusion gradients in 
multiple directions, a mathematical construct known 
as the diffusion tensor, D, could be estimated at each 
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point in the tissue. The utility of the diffusion tensor 
is that it provides the direction in three dimensional 
space in which the rate of diffusion is greatest (Basser, 
Pajevic, Pierpaoli, Duda, & Al-droubi, 2000; Borisenko 
& Tarapov, 1979).

Estimation of the Diffusion Tensor

Derivation of structural information follows a mea-
sured displacement characteristic related by means 
of a model to the physical and geometrical properties 
of the tissue. Diffusion coefficients and shapes of 
semipermeable membranes of compartments in the 
system are these related characteristics. The behavior 
of the MR signal and the measured apparent diffusion 
coefficient (ADC) as anisotropic diffusion indexes are 
greatly affected by the cellular architecture of a tissue, 
mainly because cellular membranes are relatively im-
permeable to water. 

The relationship between loss of phase coherence 
in the transverse spin RF signal and the gradient pulse 
g is given by the Stejskal-Tanner equation (1), where 
b is the diffusion weighting factor (Ciccarelli et al., 
2003) given by:
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 	  		    (2)

Here, γ is the gyromagnetic ratio, δ is the gradient pulse 
width, ∆ is the time between the gradient pulses, |g| is 
the strength of the diffusion gradient pulses.

Basser (Basser, Mattiello, & Le Bihan, 1994), build-
ing on the work of Stejskal and Tanner (Stejskal, 1965), 
has shown that the diffusion tensor can be calculated 
from knowledge of signal attenuation and magnetic 
gradient strengths applied during a diffusion weighted 
spin echo experiment using the following equations;
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where A(b) is the voxel attenuated signal (echo) inten-
sity recorded in the presence of gradients (3), A(0) is 
the gradient-free, unattenuated echo intensity, Dij is the 
(symmetric, positive definite, 3 by 3) diffusion tensor 
(3), and bij is a matrix specified by the magnetic field 
gradients applied during the spin echo. In eq. 3:
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is the standard scalar product of two tensors. This so 
called b-matrix (2, 3) has the form: ( )DbeAA :

0
−= .

Tensor Analysis and the Diffusion 
Tensor: PCA

Principal component analysis (PCA) is a classical sta-
tistical method widely used in data analysis and com-
pression. PCA is based on the statistical representation 
of a random variable. The method reduces data dimen-
sionality by performing a covariance analysis between 
factors. PCA method is based on linear transformations; 
however, nonlinear extensions exist. PCA is a technique 
for reducing second-order dependencies in the data by 
rotating the axes to correspond to orthogonal directions 
of maximum covariance (decorrelation).

From a symmetric matrix such as the covariance 
matrix, an orthogonal basis by finding its eigenvalues 
and eigenvectors can be calculated. The diffusion tensor 
D is a real, symmetric second order tensor, represented 
in matrix form as a real, symmetric 3x3 matrix (5).
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The diagonalization of the positive definite and symmet-
ric diffusion tensor results in a set of three eigenvalues, 
λ1, λ2, λ3, listed in decreasing order. The eigenvectors ei 
and the corresponding eigenvalues λi are the solutions of 
the diagonalization of D (5), where the eigenvectors ei 
are the principal diffusion directions ei (i = 1, 2, 3). The 
eigensystem of the diffusion tensor may be interpreted 
graphically as an ellipsoidal surface with semimajor axis 
oriented in the e1 direction and semiminor axis oriented 
in the e2 and e3 directions regarding to Dei=λiei.
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