
 613

C

Category: Software & Systems Design

IntroductIon

The	Unified Modeling Language (UML) was adopted by the
Object	Management	Group	(OMG)	in	1997	as	a	language	
for object-oriented (OO) analysis and design. After several
minor revisions, a major overhaul resulted in UML version
2.0 (OMG, 2003), and the language is still being refined.
Although suitable for object-oriented code design, UML
is	 less	 suitable	 for	 information	analysis,	 since	 its	graphi-
cal	language	provides	only	weak	support	for	the	kinds	of	
business	rules	found	in	data-intensive	applications,	and	its	
textual Object Constraint Language (OCL) is too technical
for most business people to understand. Moreover, UML’s
graphical	language	does	not	lend	itself	readily	to	verbaliza-
tion	and	multiple	 instantiation	for	validating	data	models	
with domain experts.

These	problems	can	be	remedied	by	using	a	fact-oriented	
approach	for	 information	analysis,	where	communication	
takes	 place	 in	 simple	 sentences,	 each	 sentence	 type	 can	
easily	be	populated	with	multiple	instances,	and	attributes	
are avoided in the base model. At design time, a fact-ori-
ented model can be used to derive a UML class model or a
logical database model. Object Role Modeling (ORM), the
main	 exemplar	 of	 the	 fact-oriented	 approach,	 originated	
in Europe in the mid-1970s (Falkenberg, 1976), and has
been	 extensively	 revised	 and	 extended	 since,	 along	 with	
commercial tool support (e.g., Halpin, Evans, Hallock, &
MacLean, 2003). Recently, a major upgrade to the methodol-
ogy resulted in ORM 2, a second-generation ORM (Halpin
2005). Neumont ORM Architect (NORMA), an open source
tool	accessible	online	at	http://sourceforge.net/projects/orm,	
is under development to provide deep support for ORM 2
(Curland & Halpin, 2007).

This	article	provides	a	concise	comparison	of	the	data	
modeling features within UML and ORM. The next section
provides background on both approaches. The following sec-
tion	summarizes	the	main	structural	differences	between	the	
two approaches, and outlines some benefits of ORM’s fact-
oriented approach. A simple example is then used to highlight
the need to supplement UML’s class modeling notation with
additional	constraints,	especially	those	underpinning	natural	
identification schemes. Future trends are then briefly outlined,
and	the	conclusion	motivates	the	use	of	both	approaches	in	
concert	to	provide	a	richer	data	modeling	experience,	and	
provides references for further reading.

Background

Detailed treatments of early UML use are provided in several
articles by Booch, Rumbaugh, and Jacobson (Booch et al.,
1999; Jacobson et al., 1999; Rumbaugh et al., 1999). The
latest specifications for UML 2 may be accessed at www.
uml.org/. The UML notation includes hundreds of symbols,
from	which	various	diagrams	may	be	constructed	to	model	
different perspectives of an application. Structural per-
spectives	may	be	modeled	with	class,	object,	component,	
deployment, package, and composite structure diagrams.
Behavioral	 perspectives	 may	 be	 modeled	 with	 use	 case,	
state	machine,	activity,	sequence,	collaboration,	interaction	
overview, and timing diagrams. This article focuses on data
modeling,	so	considers	only	the	static	structure	(class	and	
object) diagrams. UML diagrams may be supplemented
by	 textual	 constraints	 expressed	 in	 the	Object	Constraint	
Language (OCL). For detailed coverage of OCL 2.0, see
Warmer and Kleppe (2003).

ORM pictures the world simply in terms of objects
(entities or values) that play roles (parts in relationships).
For example, you are now playing the role of reading, and
this article is playing the role of being read. Overviews of
ORM may be found in Halpin (2006, 2007b) and a detailed
treatment in Halpin and Morgan (2008). For advanced treat-
ment of some specific ORM topics, see Bloesch and Halpin
(1997), De Troyer and Meersman (1995), Halpin (2001,
2002, 2004a), Halpin and Bloesch (1999), and Hofstede,
Proper, and van der Weide (1993).

data structures

Table	1	summarizes	the	correspondences	between	the	main,	
high-level data constructs in ORM and UML. An uncom-
mented “—” indicates no predefined support for the cor-
responding concept, and “†” indicates incomplete support.
This comparison indicates that ORM’s built-in symbols
provide	greater	expressive	power	for	capturing	conceptual	
constraints in graphical data models.

Classes and	 data	 types	 in UML correspond to object
types in ORM. ORM classifies objects into entities (UML
objects)	and	values (UML data values—constants such as
character strings or numbers). A fact type	(relationship	type)	

A Comparison of Data Modeling in UML and
ORM
Terry Halpin
Neumont University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

614

A Comparison of Data Modeling in UML and ORM

in ORM is called an association in UML (e.g., Employee
works for Company). The main structural difference between
ORM and UML is that ORM avoids attributes	in	its	base	
models. Implicitly, attributes may be associated with roles
in a relationship. For example, Employee.birthdate is mod-
eled in ORM as the second role of the fact type: Employee
was born on Date.

The	main	advantages	of	attribute-free	models	are	that	
all	facts	and	rules	can	be	naturally	verbalized	as	sentences,	
all	 data	 structures	 can	 be	 easily	 populated	 with	 multiple	
instances,	models	and	queries	are	more	stable	since	they	are	
immune	to	changes	that	reshape	attributes	as	associations	
(e.g., if we later wish to record the historical origin of a family
name,	a	family	name	attribute	needs	to	be	remodeled	using	a	

relationship),	nulls	are	avoided,	connectedness	via	semantic	
domains is clarified, and the metamodel is simplified. The
price	paid	is	that	attribute-free	diagrams	usually	consume	
more space. This disadvantage can be offset by deriving an
attribute-based view (e.g., a UML class model or a relational
database schema) when desired (tools can automate this).

ORM allows relationships of any arity (number of roles).
A relationship may have many readings starting at any role,
to	naturally	verbalize	constraints	and	navigation	paths	 in	
any direction. Fact type readings use mixfix	notation	to	al-
low	object	terms	at	any	position	in	the	sentence,	allowing	
natural verbalization in any language. Role names are also
allowed. ORM includes procedures for creating, verbalizing,
and transforming models. The first step in creating a data

Table 1. Comparison of the main data constructs in ORM and UML

ORM UML
Data structures:
 object type: entity type;
	value	type
	—	{	use	fact	type	}
 unary	fact	type
	2+-ary	fact	type
 objectified association (nesting)
	co-reference

Predefined Alethic Constraints:
	internal	uniqueness
	external	uniqueness
	simple	mandatory	role
	disjunctive	mandatory	role
 frequency: internal; external
	value
	subset	and	equality
	exclusion
 subtype link and definition
	ring	constraints
	join	constraints
	object	cardinality

—	 {	use	uniqueness	and	ring	}	†
—	

Deontic Rules

User-Defined Textual Constraints

Data structures:
	object	class
	data	type
 attribute
	—	{	use	Boolean	attribute	}
	2+-ary	association
	association	class
 qualified association †

Predefined Constraints:
 multiplicity of ..1 †
 — { use qualified association } †
	multiplicity	of	1+.. †
	—
 multiplicity †; —
	enumeration,	and	textual
	subset	†
	xor	†
 subclass, discriminator, etc. †
	—
	—
	class	multiplicity
	aggregation/composition
	initial	value,	changeability

	—

User-Defined Textual Constraints

† = incomplete coverage of corresponding concept

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/comparison-data-modeling-uml-orm/13638

Related Content

MACROS: Case Study of Knowledge Sharing System Development within New York State

Government Agencies
Jing Zhang, Theresa A. Paroand Joseph Sarkis (2006). Cases on Information Technology: Lessons Learned,

Volume 7 (pp. 419-439).

www.irma-international.org/chapter/macros-case-study-knowledge-sharing/6402

Delineating Knowledge Flows for Enterprise Agility
Mark E. Nissen (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 779-785).

www.irma-international.org/chapter/delineating-knowledge-flows-enterprise-agility/14335

Dissent, Protest and Transformative Action: An Exploratory Study of Staff Reactions to Electronic

Monitoring and Control of E-mail Systems in One Company Based in Ireland
Aidan Duaneand Patrick Finnegan (2007). Information Resources Management Journal (pp. 1-13).

www.irma-international.org/article/dissent-protest-transformative-action/1303

Holistic Approach to Align ICT Capabilities with Business Integration
Marc Rabaey, Herman Trompand Koenraad Vandenborre (2008). Information Communication Technologies:

Concepts, Methodologies, Tools, and Applications (pp. 2918-2932).

www.irma-international.org/chapter/holistic-approach-align-ict-capabilities/22854

Understanding the Determinants of Big Data Analytics Adoption
Surabhi Vermaand Sushil Chaurasia (2019). Information Resources Management Journal (pp. 1-26).

www.irma-international.org/article/understanding-the-determinants-of-big-data-analytics-adoption/230368

http://www.igi-global.com/chapter/comparison-data-modeling-uml-orm/13638
http://www.igi-global.com/chapter/comparison-data-modeling-uml-orm/13638
http://www.irma-international.org/chapter/macros-case-study-knowledge-sharing/6402
http://www.irma-international.org/chapter/delineating-knowledge-flows-enterprise-agility/14335
http://www.irma-international.org/article/dissent-protest-transformative-action/1303
http://www.irma-international.org/chapter/holistic-approach-align-ict-capabilities/22854
http://www.irma-international.org/article/understanding-the-determinants-of-big-data-analytics-adoption/230368

