
708 Category: Human Aspects of Technology

IntroductIon

Computer	programming	involves	more	than	thinking	of	a	
design and typing the code to implement it. While coding,
professional	programmers	are	actively	on	the	lookout	for	
syntactical glitches, logic flaws, and potential interactions
of their code with the rest of the project. Debugging and
programming	are	therefore	not	to	be	seen	(and	taught)	as	two	
distinct	skills,	but	rather	as	two	intimately	entwined	cogni-
tive processes. From this perspective, teaching programming
requires	instructors	to	also	teach	students	how	to	read	code	
rigorously and critically, how to reflect on its correctness
appropriately, and how to identify errors and fix them.

Recent studies indicate that those students who have
difficulties in programming courses often end up coding
without intention (Gaspar & Langevin, 2007). They search
for	solved	exercises	whose	descriptions	are	similar	to	that	of	
the	new	problem	at	hand,	cut	and	paste	their	solutions,	and	
randomly	modify	the	code	until	it	compiles	and	passes	the	
instructor’s test harness. This behavior is further exacerbated
by	textbooks,	which	only	require	students	to	modify	exist-
ing code, thus ignoring the creative side of programming.
Breaking	this	cognitive	pattern	means	engaging	students	in	
activities	that	develop	their	critical	thinking	along	with	their	
understanding of code and its meaning.

This	article	discusses	constructivist	programming	activi-
ties	that	can	be	used	in	undergraduate	programming	courses	
at	both	the	introductory	and	intermediate	levels	in	order	to	
help	 students	 acquire	 the	 necessary	 skills	 to	 read,	 write,	
debug, and evaluate code for correctness. Our constructivist
apprenticeship	approach builds on earlier field-tested appren-
ticeship	models	of	programming	instruction	that	successfully	
address	the	learning	barriers	of	the	new	generations	of	novice	
programmers. We go one step further by realigning such ap-
proaches to the genuine difficulty encountered by students
in	a	given	course,	while	also	addressing	some	pedagogical	
shortcomings	of	the	traditional	apprenticeship	instructional	
practice. This is achieved by introducing a strong pedagogical

constructivist	component	at	the	instructional	level	through	
so called antagonistic programming activities (APA). We
conclude	 with	 a	 manifesto	 for	 a	 new	 multidisciplinary	
research	agenda	 that	merges	 the	perspectives	on	 learning	
found	 in	 both	 the	 computing	 education	 and	 evolutionary	
computation research communities.

Background

novice programmers and their learning
Barriers

The	study	of	 the	learning	barriers	encountered	by	novice	
programmers	is	critical	to	the	computing	education	research	
community. Recent studies describing the misconceptions
and	 preconceived	 notions	 held	 by	 novice	 programmers	
(Chen, Lewandowski, McCartney, Sanders, & Simon, 2007;
Kolikant, 2005) indicate that these learning barriers evolve
with each new generation of students. In this context, a
phenomenon	known	as	“programming	without	 intention”	
has been identified as an attempt by students who encounter
difficulties in programming to mechanize the programming
thought process. Their heuristic boils down to the follow-
ing:	(a)	reading	the	description	of	the	program	to	write	and	
look	up	available	documentation	(solved	exercises,	Google,	
Krugle, etc.) for another similar, already-solved exercise, (b)
cutting	and	pasting	the	solution	to	that	exercise	as	a	starting	
point	for	the	current	assignment,	and	(c)	compiling	and	run-
ning	the	program	and,	since	it	most	likely	does	not	do	what	
is expected, modifying it. Due to the lack of understanding
of	the	solution	being	reused	and	the	lack	of	time	devoted	
to	understand	 the	programming	activity	 from	 the	ground	
up (e.g., learn the syntax, learn the role of statements, learn
when to use which), these modifications often boil down to
a	series	of	almost	random	changes	until	the	program	seems	
to execute according to the requirements.

Constructivist Apprenticeship through
Antagonistic Programming Activities
Alessio Gaspar
University of South Florida, Lakeland, USA

Sarah Langevin
University of South Florida, Lakeland, USA

Naomi Boyer
University of South Florida, Lakeland, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 709

Constructivist Apprenticeship through Antagonistic Programming Activities

C
This obviously random-based development approach

has very little to do with programming and leaves students
unable to explain why a particular statement is in their code.
In some occurrences, students stated, “I have the code now
for this assignment; I need to understand it.” This indicates a
complete reversion of the programming thought process lead-
ing from ideas to implementations. Instead, intentionality is
lost, and statements are manipulated in an almost mechanical
manner without second thoughts. Essentially, students are
utilizing skills at the lower end of the knowledge framework
by demonstrating cognitive functions that Bloom (1956)
would have termed as knowledge or understanding with no
ability to analyze, synthesize, or evaluate the programming
process itself.

Criticizing this approach is, however, insufficient. Un-
derstanding what reinforces our students’ belief that they are
problem solving when developing code this way is what can
really help us lead them to overcome this particular learning
barrier. The nature of the exercises typically found in some
introductory programming courses might be partly respon-
sible for this situation. Often, novice programmers are only
required to reuse already working programs and modify
them slightly (under heavy guidance) to do something new.
While analogical thinking is essential to the professional
developer when learning new languages, technologies, and
paradigms, it is not safe for it to be the only conceptual tool
developed by students during their first programming experi-
ence. Creative thinking, critical thinking (e.g., debugging),
and problem solving are all essential components of the
programming thought process, which, if not given proper
attention from the beginning, might fuel the misconception
that programming is just a matter of pattern matching in a
big book of existing solutions.

Leveraging Apprenticeship in
Programming Courses

This learning barrier can be addressed by an apprenticeship
model of teaching (Kolling & Barnes, 2004), which can take
on several distinct forms. The most obvious one is instruc-
tor-led live coding: An instructor presents a problem to her
or his students, lets them work on it for a definite time, and
then introduces the solution. Instead of presenting students
with a detailed explanation of the complete solution, the
instructor builds the solution from scratch in front of his
or her audience. This diverges from the usual instructional
pattern, which leads students to build a dictionary of problem-
solution pairs that were introduced in class. Such courses
encourage students to memorize data in the hopes that they
will be able to simply regurgitate it at the next exam. If a
question dares differ from a previously solved problem in
any significant way, they will then attempt to fit the memo-
rized solution to this new problem by applying a couple of

minor adjustments, which could be stumbled upon almost
randomly. By developing the solution in front of the stu-
dents, the instructor’s teaching is aligned with the learning
outcomes of the course: the programming thought process
itself vs. its outcomes. This approach is clearly illustrated
in the work of the BlueJ team and their textbook (Kolling
& Barnes, 2004).

Other implementations of the apprenticeship model of
teaching are closer to problem-based learning approaches;
students are taught the programming thought process by
applying it frequently to solve new problems from scratch.
This learn-by-programming or learn-by-doing approach also
leads students to realize the importance of creative and criti-
cal thinking in the programming activity while reducing the
benefits of memorization-only or analogy-only strategies. In
complement, these pedagogical strategies are often coupled
with peer learning approaches (McDowell, Hanks, & Werner,
2003; Willis, Finkel, Gennet, & Ward, 1994).

These apprenticeship pedagogical strategies address the
above-mentioned learning barriers by aligning the skills be-
ing practiced by students during exercise sessions with the
authentic learning outcomes expected from an introductory
programming course. This in itself complements nicely with
constructive alignment theory (Biggs, 2003), which aligns
assessment tools with expected learning outcomes.

From Apprenticeship to Constructivist
Apprenticeship

Despite these significant pedagogical achievements, the ap-
prenticeship model of instruction can be further improved
from the instructional method perspective. Let us take a
critical look at the above-mentioned apprenticeship activities:
instructors demonstrating the programming thought process
while solving a problem live, classmates developing code
while other students play the role of a peer programming
observer, students coding against each other in a game-
based learning environment (e.g., Bierre, Ventura, Phelps,
& Egert, 2006).

These activities are essentially instructivist in nature;
students are presented with a problem, they work on it,
and then the instructor (or their peer) corrects them or even
develops a complete solution for them. Even though the
thought process is the focus of the demonstration rather than
the solution itself, the teaching process is mostly unilateral.
The “sage on the stage” (or next seat) strikes again and leads
students to adopt a rather passive attitude as they receive
their instruction.

Besides the motivational or attention-span issues that
such approaches can cause, the work invested by students
to develop their own solution is completely ignored in the
instructional process (a hallmark of instructivist pedago-
gies). They are therefore never corrected, improved, or even

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/constructivist-apprenticeship-through-antagonistic-

programming/13653

Related Content

E-Learning Experiences in La Ribera Health Department
Juan Vicente Izquierdo Soriano, Felix Buendia Garcia, Jose Luis Ortega Monzoand Eduardo Tabernero

(2014). Journal of Information Technology Research (pp. 7-23).

www.irma-international.org/article/e-learning-experiences-in-la-ribera-health-department/111294

W
 (2007). Dictionary of Information Science and Technology (pp. 737-757).

www.irma-international.org/chapter//119584

A Case on Communication Management
Susanne Robra-Bissantz (2002). Annals of Cases on Information Technology: Volume 4 (pp. 328-344).

www.irma-international.org/chapter/case-communication-management/44516

An Auction-Based Incentivized Solution Against DDoS Attacks
B. B. Guptaand Amrita Dahiya (2021). Journal of Information Technology Research (pp. 1-19).

www.irma-international.org/article/an-auction-based-incentivized-solution-against-ddos-attacks/271404

Using a Blended Model to Improve Delivery of Teacher Education Curriculum in Global Settings
Vivian H. Wright, Ronnie Stanfordand Jon Beedle (2008). Information Communication Technologies: Concepts,

Methodologies, Tools, and Applications (pp. 1216-1224).

www.irma-international.org/chapter/using-blended-model-improve-delivery/22733

http://www.igi-global.com/chapter/constructivist-apprenticeship-through-antagonistic-programming/13653
http://www.igi-global.com/chapter/constructivist-apprenticeship-through-antagonistic-programming/13653
http://www.igi-global.com/chapter/constructivist-apprenticeship-through-antagonistic-programming/13653
http://www.irma-international.org/article/e-learning-experiences-in-la-ribera-health-department/111294
http://www.irma-international.org/chapter//119584
http://www.irma-international.org/chapter/case-communication-management/44516
http://www.irma-international.org/article/an-auction-based-incentivized-solution-against-ddos-attacks/271404
http://www.irma-international.org/chapter/using-blended-model-improve-delivery/22733

