1566

Category: Software & Systems Design

Foundations for MDA Case Tools

Liliana Maria Favre

Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

Claudia Teresa Pereira

Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

Liliana Inés Martinez

Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

INTRODUCTION

The model driven architecture (MDA) is an initiative pro-
posed by the object management group (OMG), which is
emerging as a technical framework to improve productiv-
ity, portability, interoperability, and maintenance (MDA,
2003).

MDA promotes the use of models and model-to-model
transformations for developing software systems. All
artifacts, such as requirement specifications, architecture
descriptions, design descriptions, and code are regarded
as models. MDA distinguishes four main kinds of models:
computation independent model (CIM), platform indepen-
dent model (PIM), platform specific models (PSM), and
implementation specific model (ISM).

A CIM describes a system from the computation in-
dependent viewpoint that focuses on the environment of
and the requirements for the system. In general, it is called
domain model. A PIM is a model that contains no reference
to the platforms that are used to realize it. A PSM describes
a system with full knowledge of the final implementation
platform. In this context, a platform is “a set of subsystems
and technologies that provide a coherent set of functionality
which any application supported by that platform can use
without concern for the details of how the functionality is
implemented” (MDA, 2003, p. 2-3). PIMs and PSMs are
expressed using the unified modeling language (UML)
combined with the object constraint language (OCL) (Favre,
2003; OCL, 2004; UML, 2004).

The idea behind MDA is to manage the evolution from
CIMs to PIMs and PSMs that can be used to generate ex-
ecutable components and applications. In MDA is crucial
to define, manage, and maintain traces and relationships
between different models and automatically transform them
and produce code that is complete and executable.

Metamodeling has become an essential technique in
model-centric software development. The metamodeling
framework for the UML itself is based on architecture with
four layers: meta-metamodel, metamodel, model, and user
objects. A metamodel is an explicit model of the constructs

and rules needed to build specific models, its instances. A
meta-metamodel defines a language to write metamodels.
OCL can be used to attach consistency rules to models and
metamodels. Related OMG standard metamodels and meta-
metamodels such as meta object facility (MOF), software
process engineering metamodel (SPEM) and common ware-
house model (CWM) share a common design philosophy
(CWM, 2001; MOF, 2005; SPEM, 2005).

MOF defines a common way for capturing all the di-
versity of modeling standards and interchange constructs.
MOF uses an object modeling framework that is essentially
a subset of the UML core. The four main modeling concepts
are “classes, which model MOF metaobjects; associations,
which model binary relationships between metaobjects;
data types, which model other data; and packages, which
modularize the models” (MOF, 2005, p. 2-6). The query,
view, transformation (QVT) standard depends on MOF and
OCL for specifying queries, views, and transformations. A
query selects specific elements of a model, a view is a model
derived from other model, and a model transformation is a
specification of a mechanism to convert the elements of a
model, into elements of another model, which can be instances
of the same or different metamodels (QVT, 2003).

The success of MDA depends on the existence of CASE
(computer-aided software engineering) tools that make a
significant impact on software processes such as forward
engineering and reverse engineering processes (CASE,
2000). This article explains the most important challenges
to automate the processes that should be supported by MDA
tools. We propose an integration of knowledge developed by
the community of formal methods with MDA. We describe
a rigorous framework that comprises the metamodeling
notation NEREUS and bridges between MOF-metamodels
and NEREUS, and between NEREUS and formal languages.
NEREUS can be viewed as an intermediate notation open to
many other formal specifications. We analyze metamodel-
ing techniques for expressing model transformations such
as refinements and refactorings. Our approach focuses on
interoperability of formal languages in model driven devel-
opment (MDD).

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



Foundations for MDA Case Tools

This article is organized as follow. We first analyze the
limitations of the existing MDA-based CASE tools. Then,
we describe the bases of rigorous MDA-based processes.
Next, we show how the formalization of MOF metamodels
and metamodel-based model transformations allows us au-
tomatic software generation. Finally, we highlight the key
directions in which MDA is moving forward.

BACKGROUND

To date, there are about 120 UML CASE tools that vary
widely in functionality, usability, performance, and plat-
forms (CASE, 2006). Some of them can only help with the
mechanics of drawing and exporting UML diagrams. The
mainstream object-oriented CASE tools support forward
engineering and reverse engineering processes and can help
with the analysis of consistency between diagrams. Only a
few UML tools include extension for real time modeling.
The tool market around MDA tools is still in flux and only
about 10% of them provide some support for MDA. Table
1 exemplifies a taxonomy of the UML CASE tools (CASE,
2006).

The current techniques available in the commercial
tools do not allow generating complete and executable code
and after generation, the code needs additions. A source
of problems in the code generation processes is that, on
the one hand, the UML models contain information that
cannot be expressed in object-oriented languages while,
on the other hand, the object-oriented languages express
implementation characteristics that have no counterpart in
the UML models.

Moreover, the existing CASE tools do not exploit all the
information contained in the UML models. For instance,
cardinality and constraints of associations and precondi-
tions, postconditions, and class invariants in OCL are only
translated as annotations. It is the designer’s responsibility
to make good use of this information either selecting an
appropriate implementation from a limited repertoire or
implementing the association by himself.

Table 1. UML CASE tools

On the other hand, many CASE tools support reverse
engineering, however, they only use more basic notational
features with a direct code representation and produce very
large diagrams. Reverse engineering processes are facilitated
by inserting annotations in the generated code. These an-
notations are the link between the model elements and the
language. As such, they should be kept intact and not be
changed. It is the programmer’s responsibility to know what
he or she can modify and what he or she cannot modify.

UML CASE tools provide limited facilities for refactoring
on source code through an explicit selection made for the
designer. However, it will be worth thinking about refactor-
ing at the design level. The advantage of refactoring at UML
level is that the transformations do not have to be tied to the
syntax of a programming language. This is relevant since
UML is designed to serve as a basis for code generation with
MDA (Sunye et al., 2001).

Techniques that currently exist in UML CASE tools
provide little support for validating models in the design
stages. Reasoning about models of systems is well supported
by automated theorem provers and model checkers, however,
these tools are not integrated into CASE tools environments.
Another problem is that as soon as the requirements specifi-
cations are handed down, the system architecture begins to
deviate from specifications (Kollmann & Gogolla, 2002).
Only research tools provide support for formal specification
and deductive verification.

All of the MDA CASE tools are partially compliant to
MDA features. They provide good support for modeling and
limited support for automated transformation. In general,
they support MDD from the PIM level and use UML class
diagrams for designing PIMs. Some of them provide only one
level of transformation from PIM to code (Codagen, Ameos,
Arcstyler) and, in general, there is no relation between QVT
and the current existing MDA tools. As an example, OptimalJ
from Compuware supports MDD from PIM level. It allows
generating PSMs from a PIM and a partial code generation.
It distinguishes three kinds of models: a domain model that
correspond to a PIM model, an application model that in-
cludes PSMs linked to different platforms (Relational-PSM,
EJB-PSM and Web-PSM), and an implementation model.

Basic drawing tools Visio

Main stream object oriented case tools

Rational Rose, Argo/UML, Together, UModel, Magic-
Draw, MetaEdit+, Poseidon

Real time/embedded tools

Rapsody, Rational Rose Real Time, RapidRMA

MDA -based tools

OptimalJ, AndroMDA, Ameos, Together Architect,
Codagen, ArcStyler, MDE Studio, Objecteering

1567




6 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage: www.igi-
global.com/chapter/foundations-mda-case-tools/13786

Related Content

Secure Computation on Cloud Storage: A Homomorphic Approach
Daya Sagar Guptaand G. P. Biswas (2015). Journal of Cases on Information Technology (pp. 22-29).

www.irma-international.org/article/secure-computation-on-cloud-storage/148163

E-Mail and Communication
Dianne Willis (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 1024-1029).

www.irma-international.org/chapter/mail-communication/14380

Cisco Systems: Implementing “Customized” ERP in Nine Months and within Budget
Avimanyu Datta (2009). Journal of Cases on Information Technology (pp. 56-70).
www.irma-international.org/article/cisco-systems-implementing-customized-erp/3244

IT Risk Evaluation Model Using Risk Maps and Fuzzy Inference

Constanta- Nicoleta Bodeaand Maria-luliana Dascalu (2012). Project Management Techniques and
Innovations in Information Technology (pp. 66-84).
www.irma-international.org/chapter/risk-evaluation-model-using-risk/64955

The 24-Hour Knowledge Factory: Work and Organizational Redesign and Associated Challenges
Amar Gupta, Satwik Seshasai, Ravi Aronand Siddharth Pareek (2010). Information Resources Management
Journal (pp. 40-56).

www.irma-international.org/article/hour-knowledge-factory/46633



http://www.igi-global.com/chapter/foundations-mda-case-tools/13786
http://www.igi-global.com/chapter/foundations-mda-case-tools/13786
http://www.irma-international.org/article/secure-computation-on-cloud-storage/148163
http://www.irma-international.org/chapter/mail-communication/14380
http://www.irma-international.org/article/cisco-systems-implementing-customized-erp/3244
http://www.irma-international.org/chapter/risk-evaluation-model-using-risk/64955
http://www.irma-international.org/article/hour-knowledge-factory/46633

