
1863

I

Category: Software & Systems Design

INTRODUCTION

Unlike natural languages, programming languages are strictly
stylized entities created to facilitate human communication
with computers. In order to make programming languages
recognizable by computers, one of the key challenges is to
describe and implement language syntax and semantics such
that the program can be translated into machine-readable
code. This process is normally considered as the front-end
of a compiler, which is mainly related to the programming
language, but not the target machine.

This article will address the most important aspects in
building a compiler front-end; that is, syntax and semantic
analysis, including related theories, technologies and tools,
as well as existing problems and future trends. As the main

discussed in detail. The article provides the reader with a
high-level overview of the language implementation process,
as well as some commonly used terms and development
practices.

BACKGROUND

The task of describing the syntax and semantics of a
programming language in a precise but comprehensible
manner is critical to the language’s success (Sebesta, 2008).
The syntax of a programming language is the representation
of its programmable entities, for example, expressions,
declarations and commands. The semantics is the actual
meaning of the syntax entities. Since the 1960s (Sebesta,
2008), intensive research efforts have been made to formalize
the language implementation process. Great success has been
made in the syntax analysis domain. Context-free grammars

are widely used to describe the syntax of programming
languages, as well as notations for automatic parser generation

useful in describing semantics in a precise and logical manner,
which is helpful for compiler implementation and program
correctness proofs (Slonneger & Kurtz, 1995). However,
there is no universally accepted formal method for semantic
description (Sebesta, 2008), due to the fact that the semantics

to invent a simple notation to satisfy all the computation
needs of various kinds of programming languages. Overall,
compiler development is still generally considered as one
of the most appropriate software applications that can be

Context-free grammar, BNF and EBNF. In the 1950s,
Noam Chomsky invented four levels of grammars to formally
describe different kinds of languages (Chomsky, 1959).
These grammars, from Type-0 to Type-3, are rated by their
expressive power in decreasing order, which is known as the
Chomsky hierarchy. The two weaker grammar types (i.e.,
regular grammars, Type-3; and context-free grammars,
Type-2) are well-suited to describe the lexemes (i.e., the
atomic-level syntactic units) and the syntactic grammar of
programming languages, respectively. Backus-Naur Form
(BNF) was introduced shortly after the Chomsky hierarchy.
BNF has the same expressive power as context-free grammar

BNF has an extended version called Extended BNF, or
simply EBNF, where a set of operators are added to facilitate
the expression of production rules.

LL, LR and GLR parsing. Based on context-free
grammars and BNF, a number of parsing algorithms have
been developed. The two main categories among them are
called top-down parsing and bottom-up parsing. Top-

Implementation of Programming Languages
Syntax and Semantics
Xiaoqing Wu
The University of Alabama at Birmingham, USA

Marjan Mernik
University of Maribor, Slovenia

Barrett R. Bryant
The University of Alabama at Birmingham, USA

Jeff Gray
The University of Alabama at Birmingham, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

1864

Implementation of Programming Languages Syntax and Semantics

down parsing recursively expands a nonterminal (initially
the start symbol) according to its corresponding productions
and matches the expanded sentences against the input
program. Because it parses the input from Left to right,
and constructs a Left parse (i.e., left-most derivation) of the
program, a top-down parser is also called an LL parser. A
typical implementation of an LL parser is to use recursive
descent function calls for the expansion of each nonterminal,
which are easy to develop by hand. Bottom-up parsing, on

nonterminals. Bottom-up parsing also parses the input from
Left to right, but it constructs a Right parse (i.e., reverse of a
right-most derivation) of the program. Therefore, a bottom-up
parser is also called an LR parser. LR parsers are typically
implemented by a pushdown automaton with actions to shift
(i.e., push an input token into the stack) or reduce (i.e., replace
a production right-hand side at the top of the stack by the

hand. The table size of a canonical LR parser is generally
considered too large to use in practice. Consequently, an
optimized form of it, the LALR (Look Ahead LR) parser is

size (Aho, Lam, Sethi, & Ullman, 2007).
The grammars recognized by LL and LR parsers are

called LL and LR grammars, respectively. They are both
subsets of context-free grammars. LL grammars cannot

have left-recursive references (i.e., a nonterminal has
a derivation with itself as the leftmost symbol) and LR

rewritten as an LR grammar, but not vice versa. Both LL and
LR parsers can be extended by using k tokens of lookahead.
The associated parsers are called LL(k) parsers and LR(k)
parsers, respectively. Lookahead can eliminate most of

a generic way, an extension of the LR parsing algorithm,
called GLR (Generalized LR) parsing (Tomita, 1986), has
been invented to handle any context-free grammar, including
ambiguous ones. The basic strategy of the algorithm is,

the available actions in parallel. Hence, GLR parsers are

nature, the GLR parsing suffers from its time and space
complexity. Various attempts have been made to optimize
its performance (e.g., McPeak & Necula, 2004). Currently,
GLR is still not widely used in programming language
implementation, but its popularity is growing. There are a
number of tools available to automatically generate LL, LR
and GLR parsers from grammars1. These tools are generally
referred to as parser generators or compiler-compilers (Aho,
Lam, Sethi, & Ullman, 2007).

Figure 1. Attribute grammar of the Robot language for location calculation

 Production Semantic Rules

0 1 0 1

0 1

0

0

1

1

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/implementation-programming-languages-syntax-

semantics/13831

Related Content

Reengineering the Selling Process in a Showroom
Jakov Crnkovic, Goran Petkovicand Nebojsa Janicijevic (2002). Annals of Cases on Information Technology:

Volume 4 (pp. 499-512).

www.irma-international.org/chapter/reengineering-selling-process-showroom/44527

The Impact of E-Commerce Technology on the Air Travel Industry
Susan Gasson (2003). Annals of Cases on Information Technology: Volume 5 (pp. 234-249).

www.irma-international.org/article/impact-commerce-technology-air-travel/44544

Agile Methodology in an SaaS Deployment Project: A Pre- and Post-SaaS Deployment Study
Ali Hassan, Soayba Younasand Amiya Bhaumik (2021). International Journal of Information Technology

Project Management (pp. 1-29).

www.irma-international.org/article/agile-methodology-in-an-saas-deployment-project/273205

Setting Up to Fail: The Case of Midwest MBA
Andrew Urbaczewskiand Jo Ellen Moore (1999). Success and Pitfalls of Information Technology Management

(pp. 143-148).

www.irma-international.org/chapter/setting-fail-case-midwest-mba/33487

Organizational Urbanism: A Value Proposal for the Generation of Organizational Intelligence to

Healthcare Institutions – The Case of a Portuguese Hospital Center
Pedro Fernandes Anunciaçãoand Sónia Nunes (2016). Handbook of Research on Information Architecture and

Management in Modern Organizations (pp. 458-486).

www.irma-international.org/chapter/organizational-urbanism/135781

http://www.igi-global.com/chapter/implementation-programming-languages-syntax-semantics/13831
http://www.igi-global.com/chapter/implementation-programming-languages-syntax-semantics/13831
http://www.igi-global.com/chapter/implementation-programming-languages-syntax-semantics/13831
http://www.irma-international.org/chapter/reengineering-selling-process-showroom/44527
http://www.irma-international.org/article/impact-commerce-technology-air-travel/44544
http://www.irma-international.org/article/agile-methodology-in-an-saas-deployment-project/273205
http://www.irma-international.org/chapter/setting-fail-case-midwest-mba/33487
http://www.irma-international.org/chapter/organizational-urbanism/135781

