
2783

N

Category: Web Technologies

INTRODUCTION

Internet users are currently plagued by an assortment of 
malicious software (malware). The Internet provides not 
only connectivity for network services such as e-mail and 
Web browsing, but also an environment for the spread of 
malware between computers. Users can be affected even if 
their computers are not vulnerable to malware. For example, 
fast-spreading worms can cause widespread congestion that 
will bring down network services. 

Worms and viruses are both common types of self-rep-
licating malware but differ in their method of replication 
(Grimes, 2001; Harley, Slade, & Gattiker, 2001; Szor, 2005). 
A computer virus depends on hijacking control of another 
(host) program to attach a copy of its virus code to more files 
or programs. When the newly infected program is executed, 
the virus code is also executed. In contrast, a worm is a 
standalone program that does not depend on other programs 
(Nazario, 2004). It replicates by searching for vulnerable 
targets through the network, and attempts to transfer a copy 
of itself. Worms are dependent on the network environment 
to spread. Over the years, the Internet has become a fertile 
environment for worms to thrive.

The constant exposure of computer users to worm threats 
from the Internet is a major concern. Another concern is the 
possible rate of infection. Because worms are automated 
programs, they can spread without any human action. The 
fastest time needed to infect a majority of Internet users is 
a matter of speculation, but some worry that a new worm 
outbreak could spread through the Internet much faster than 
defenses could detect and block it. The most reliable defenses 
are based on attack signatures. If a new worm does not have 
an existing signature, it could have some time to spread 
unhindered and complete its damage before a signature can 
be devised for it.

Perhaps a greater concern about worms is their role as 
vehicles for delivery of other malware in their payload. Once 
a worm has compromised a host victim, it can execute any 
payload. Historical examples of worms have included:

• Trojan horses: Software with a hidden malicious 
function, for example, to steal confidential data or 
open a backdoor;

• Droppers: Designed to facilitate downloading of other 
malware;

• Bots: Software to listen covertly for and execute remote 
commands, for example, to send spam or carry out a 
distributed denial of service (DDoS) attack.

These types of malware are not able to spread by them-
selves, and therefore take advantage of the self-replication 
characteristic of worms to spread.

This article presents a review of the historical develop-
ment of worms, and an overview of worm anatomy from a 
functional perspective. 

BACKGROUND

The term “worm” was created by John Shoch and Jon Hupp 
at Xerox PARC in 1979, inspired by the network-based mul-
tisegmented “tapeworm” monster in John Brunner’s novel, 
The Shockwave Rider (Shoch & Hupp, 1982). They were 
aware of an earlier self-replicating program, Creeper, writ-
ten by Bob Thomas at BBN, which propelled itself between 
nodes of the ARPANET. They invented a worm to traverse 
their internal Ethernet LAN seeking idle processors after 
normal working hours for the purpose of distributed comput-
ing. Because the worms were intended for beneficial uses 
among cooperative users, there was no attempt at stealth or 
malicious payload. Their worms were designed with limited 
lifetimes, and responsive to a special “kill” packet. Despite 
these safeguards, one of the worm programs believed to have 
been accidentally corrupted ran out of control and crashed 
several computers overnight.

The most famous worm incident was the Morris worm in 
November 1988 that disabled 6,000 computers in a few hours 
(Spafford, 1989). Robert Morris Jr. was a student at Cornell 
University at the time. The damage was caused by the worm 
re-infecting computers that were already infected, until the 
computers slowed down and crashed. It was probably the 
first worm to use a combination of methods to spread quickly. 
First, it attempted to crack password files on Unix systems. 
The password file was encrypted but publicly readable. The 
worm could encrypt password guesses and compare them 
to the contents of the password file. Second, it exploited 

Network Worms
Thomas M. Chen
Southern Methodist University, USA

Greg W. Tally
SPARTA Inc., USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



2784  

Network Worms

the debug option in the Unix sendmail program. Third, it 
carried out a buffer overflow exploit taking advantage of a 
vulnerability in the Unix finger daemon program. 

Worm development was relatively slow until 1999, when 
e-mail became a popular infection vector. In March 1999, 
Melissa spread to 100,000 computers in 3 days, setting a 
new record and shutting down e-mail for many companies 
using Microsoft Exchange Server (CERT advisory CA-
1999-04, 1999). It was a Microsoft Word macro that used 
the functions of Word and Outlook e-mail to propagate. 
When the macro is executed in Word, it launched Outlook 
and sent itself to 50 recipients found in the address book. 
Additionally, it infected the Word normal.dot template, so 
that any Word document created from the template would 
carry the infection.

In the summer of 1999, the PrettyPark worm propagated 
as an e-mail attachment called “Pretty Park.exe” with the 
icon of a character from the television show “South Park.” 
If executed, it installed itself into the system folder and 
modified the registry to ensure that it ran whenever any .exe 
program was executed. It e-mailed itself to addresses found 
in the address book. Another worm, ExploreZip, appeared 
to be a WinZip file attachment in e-mail but was not really 
a zipped file. When executed, it displayed an error message 
but the worm secretly copied itself into the systems folder 
and loaded itself into the registry. It e-mailed itself using 
Outlook or Exchange to recipients found in unread messages 
in the inbox. It monitored all incoming messages and replied 
to senders with a copy of itself.

The summer of 2000 saw more mass mailing worms. In 
May 2000, the Love Letter worm appeared with the subject 
line “I love you” and encouraged the recipient to read the 
attachment which was a Visual Basic script (CERT advisory 
CA-2000-04, 2000). When executed, the worm installed 
copies of itself into the windows and system directories and 
modified the registry to ensure that it would be run during 
bootup. It infected various types of files (.vbs, .jpg, .mp3, 
etc.) on local drives and networked shared directories. If 
Outlook is installed, the worm e-mailed copies of itself to 
anyone found in the address book. In addition, the worm 
sent copies of itself via IRC channels.

Appearing around the same time, NewLove was a Visual 
Basic script worm. It was interesting as a polymorphic worm 
that tried to change its appearance in every copy. The worm 
forwarded itself with a file name chosen randomly from 
“recent documents” to all addresses in the Outlook address 
book. The e-mail has no text but has a subject line including 
the new file name.

In October 2000, the Hybris worm spread as an e-mail 
attachment (CERT incident note IN-2001-02, 2001). If ex-
ecuted, it modified the “wsock32.dll” file in order to track 
all Internet traffic at the infected host. For every e-mail sent, 
it subsequently sent a copy of itself to the same recipient. It 
had the interesting capability to receive plug-ins dynamically 

by connecting to a preprogrammed newsgroup. The plug-ins 
were encrypted and updated the worm code. This capability 
is potentially dangerous because the worm functionality can 
be changed at any time by the worm author.

A new wave of more sophisticated worms began in early 
2001. In March 2001, the Lion worm spread among Linux 
computers using the “pscan” application, a freely distributed 
network port scanner written in Perl. The worm used this port 
scanner in combination with the “randb” program to scan 
class B hosts listening on TCP port 53 that were vulnerable 
to the BIND buffer overflow vulnerability. It then attacked 
these hosts using an exploit called “name.” After a system 
was compromised, the worm stole password files and other 
sensitive information (IP address, accounts) and sent these 
by e-mail. It also installed several things: the t0rn rootkit 
to evade detection, the DDoS agent TFN2K, a Trojanized 
version of SSH to listen on port 33568, and backdoor root 
shells on TCP ports 60008 and 33567. 

In May 2001, the Sadmind worm first exploited a buffer 
overflow vulnerability in Sun Solaris systems. These com-
promised systems were then used to carry out an attack to 
compromise Microsoft IIS (Internet Information Services) 
Web servers.

In July 2001, the Code Red worm caused major damages 
by exploiting a buffer overflow vulnerability discovered in 
Microsoft IIS Web servers about a month earlier (Berghel, 
2001; Moore, Shannon, & Brown, 2001). Specifically, the 
Index Server ISAPI vulnerability allowed a remote attacker 
to gain full system level access (Microsoft Security Bulletin 
MS01-033, 2001). The first version of the Code Red worm 
appeared on July 12. On infected systems, it set up 100 parallel 
threads, each an exact replica of the worm, in order to spread 
faster. It attempted to generate pseudorandom IP addresses 
but used a static seed which (apparently unintentionally) 
resulted in identical lists of IP addresses. Although 200,000 
hosts were infected in 6 days, the worm was slowed down 
by the fact that the same targets were getting hit repeatedly. 
A second version of Code Red appeared on July 19. This 
version spread much faster because the static seed had been 
changed to a random seed, ensuring that each copy of the 
worm generated different IP addresses. More than 359,000 
computers were reportedly infected by Code Red version 2 
within 14 hours. By design, the worm stopped by itself on 
July 20. On August 4, a new worm self-named Code Red II 
used the same buffer overflow exploit but a different payload. 
It generated random IP addresses but they are not completely 
random; about 1 out of 8 are completely random; 4 out of 8 
addresses are within the same class A range of the infected 
host’s address; and 3 out of 8 addresses are within the same 
class B range of the infected host’s address. On infected 
systems, it activated 300 parallel threads to spread faster. 
The enormous number of parallel threads created a flood of 
scans, resulting in serious network congestion. 



 

 

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/network-worms/13982

Related Content

E-Government, E-Democracy and the Politicians
Birgit Jaeger (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 990-994).

www.irma-international.org/chapter/government-democracy-politicians/14374

Faculty Competencies and Incentives for Teaching in E-Learning Environments
Kim E. Dooley, Theresa Pesl Murphrey, James R. Lindnerand Timothy H. Murphy (2009). Encyclopedia of

Information Science and Technology, Second Edition (pp. 1527-1531).

www.irma-international.org/chapter/faculty-competencies-incentives-teaching-learning/13780

Evaluating Intercultural Sensibility in Compulsory Secondary Education: The Case of Salamanca

(Spain)
Paloma No-Gutiérrez, María-José Rodríguez-Condeand Eva-María Torrecilla-Sánchez (2018). Journal of

Information Technology Research (pp. 1-15).

www.irma-international.org/article/evaluating-intercultural-sensibility-in-compulsory-secondary-education/212606

Technology-Enhanced Progressive Inquiry in Higher Education
Hanni Muukkonen, Minna Lakkalaand Kai Hakkarainen (2009). Encyclopedia of Information Science and

Technology, Second Edition (pp. 3714-3720).

www.irma-international.org/chapter/technology-enhanced-progressive-inquiry-higher/14130

Evaluation of an Open Learning Environment
Geraldine Clarebout, Jan Elen, Joost Lowyck, Jeff Van den Endeand Erwin Van den Enden (2005).

Encyclopedia of Information Science and Technology, First Edition (pp. 1134-1137).

www.irma-international.org/chapter/evaluation-open-learning-environment/14399

http://www.igi-global.com/chapter/network-worms/13982
http://www.igi-global.com/chapter/network-worms/13982
http://www.irma-international.org/chapter/government-democracy-politicians/14374
http://www.irma-international.org/chapter/faculty-competencies-incentives-teaching-learning/13780
http://www.irma-international.org/article/evaluating-intercultural-sensibility-in-compulsory-secondary-education/212606
http://www.irma-international.org/chapter/technology-enhanced-progressive-inquiry-higher/14130
http://www.irma-international.org/chapter/evaluation-open-learning-environment/14399

