
 2855

O

Category: Software & Systems Design

Object-Oriented Software Reuse in Business
Systems
Daniel Brandon, Jr.
Christian Brothers University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

“Reuse [software] engineering is a process where a technol-
ogy asset is designed and developed following architectural
principles, and with the intent of being reused in the future”
(Bean, 1999). “If programming has a Holy Grail, widespread
code reuse is it with a silver bullet. While IT has made and
continues to make laudable progress in our reuse, we never
seem to make great strides in this area” (Grinzo, 1998). “The
quest for that Holy Grail has taken many developers over
many years down unproductive paths” (Bowen, 1997). This
article is an overview of software reuse methods, particularly
object oriented, that have been found effective in business
systems over the years.

BACKGROUND

Traditional software development is characterized by many
disturbing but well documented facts, including:

• Most software development projects “fail” (60%)
(Williamson, 1999).

• The supply of qualified IT professionals is much less
than the demand (www.bls.gov).

• The complexity of software is constantly increasing.
• IT needs “better,” “cheaper,” “faster” software devel-

opment methods.

Over the years, IT theorists and practitioners have come
up with a number of business and technical methods to ad-
dress these problems and improve the software development
process and results thereof. Most notable in this sequence of
techniques are CASE (computer-aided software engineer-
ing), JAD (joint application development), prototyping, 4GL
(fourth generation languages), and Pair/Xtreme program-
ming. While these methods have often provided some gains,
none have provided the improvements necessary to become
that “silver bullet.” CASE methods have allowed develop-
ment organizations to build the wrong system even faster,
“wrong” in the sense that requirements are not met and/or
the resulting system is not maintainable or adaptable. JAD
methods tend to waste more of everyone’s time in meetings.

While prototypes can help better define user requirements,
the tendency (or expectation) that the prototype can be easily
extended into the real system is very problematic. The use of
4GL languages only speeds up the development of the parts
of the system that were easy to make anyway, while unable
to address the more difficult and time consuming portions.
Pair programming has some merits but stifles creativity and
often requires more time and money.

The only true “solution” has been effective software
reuse. Reuse of existing proven components can result in the
faster development of software with higher quality. Improved
quality results from both the use of previous “tried and true”
components and the fact that standards (technical and busi-
ness) can be built into the reusable components (Brandon,
2000). This improved quality results in lower lifecycle
maintenance costs, and since two thirds of software product
lifecycle costs are in post-delivery maintenance, this cost
savings aspect of reusability is the most rewarding (Schach,
2005). There are several types of reusable components that
can address both the design and implementation process.
These come in different levels of “granularity” and in both
object oriented and non-object oriented flavors.

Software reuse received much attention in the 1980s
but did not catch on in a big way until the advent of object
oriented languages and tools” (Anthes, 2003). In Charles
Darwin’s theory of species survival, it was the most adaptable
species that would survive (not the smartest, strongest, or
fastest). In today’s fast moving business and technical world,
software must be adaptable to survive and be of continuing
benefit. Object oriented software offers a very high degree of
adaptability. “Object technology promises a way to deliver
cost-effective, high quality and flexible systems on time
to the customer” (McClure, 1996). “IS shops that institute
component-based software development reduce failure, em-
brace efficiency and augment the bottom line” (Williamson,
1999). “The bottom line is this: while it takes time for reuse
to settle into an organization—and for an organization to
settle on reuse—you can add increasing value throughout
the process” (Barrett & Schmuller, 1999). We say “object
technology” not just adopting an object oriented language
(such as C++, Java, or PHP), since one can still build poor,
non-object oriented, and non-reusable software, even using
a fully object oriented language.

2856

Object-Oriented Software Reuse in Business Systems

TYPES AND APPLICATIONS OF REUSE

Radding (1998) defines several different types of reusable
components, which form a type of “granularity scale”:

• GUI Widgets: Effective, but only provide modest
payback.

• Server-Side Components: Provide significant pay-
back but require extensive up-front design and an
architectural foundation.

• Infrastructure Components: Generic services for
transactions, messaging, and database … require
extensive design and complex programming.

• High-Level Patterns: Identify components with high
reuse potential.

• Packaged Applications: Only guaranteed reuse—may
not offer the exact functionality required. This includes
COTS (commercial off the shelf software).

An even lower level of granularity is often defined to
include simple text files that may be used in a number of code
locations such as “read-me” and documentation files, “help”
files, Web content, business rules, XML schemas, test cases,
and so forth. Among the most important recent developments
of object oriented technologies is the emergence of design
patterns and frameworks, which are intended to address
the reuse of software design and architectures (Xiaoping,
2003). The reuse of “patterns” can have a higher level of
effectiveness over just source code reuse. Current pattern
level reuse includes such entities as a J2EE Session Façade
or the .Net Model-View-Controller pattern.

Reuse has two types. The first is called opportunistic (or
accidental) reuse, where developers realize that a component
from a previous project could be used in the current proj-
ect. The second is systematic (or deliberate) reuse, where
components are built to be reused (Schach, 2005). Reusing
code also has several key implementation areas: application
evolution, multiple implementations, standards, and new
applications. The reuse of code from prior applications in
new applications has received the most attention. However,
just as important is the reuse of code (and the technology
embedded therein) within the same application.

Application Evolution

Applications must evolve even before they are completely
developed, since the environment under which they operate
(business, regulatory, social, political, etc.) changes during
the time the software is designed and implemented. This
is the traditional “requirements creep.” Then after the ap-
plication is successfully deployed, there is a constant need
for change.

Multiple Implementations

Another key need for reusability within the same application
is for multiple implementations. The most common need for
multiple implementations involves customizations, interna-
tionalization, and multiple platform support. Organizations
whose software must be utilized globally may have a need
to present an interface to customers in the native language
and socially acceptable look and feel (“localization”). The
multiple platform dimension of reuse today involves an
architectural choice in languages and delivery platforms.

Corporate Software
Development Standards

Corporate software development standards concern both
maintaining standards in all parts of an application and
maintaining standards across all applications. “For a com-
puter system to have lasting value it must exist compatibly
with users and other systems in an ever-changing informa-
tion technology (IT) world” (Brandon, 2000). As stated by
Weinschenk and Yeo, “Interface designers, project managers,
developers, and business units need a common set of look-
and-feel guidelines to design and develop by” (Weinschenk
& Yeo, 1995). In the area of user interface standards alone,
Appendix A of Weinschenk’s book presents a list of these
standards; there are over 300 items (Weinschenk, Jamar, &
Yeo, 1997). Many companies today still rely on some type
of printed “Standards Manuals.”

EFFECTIVE SOFTWARE REUSE

Only about 15% of any information system serves a truly
original purpose; the other 85% could be theoretically re-
used in future information systems. However, reuse rates
over 40% are rare (Schach, 2004). “Programmers have
been swapping code for as long as software has existed”
(Anthes, 2003). Formal implementation of reuse in various
forms of software reuse has been a part of IT since the early
refinements to 3GLs (Third Generation Languages). COBOL
had the “copy book” concept, where common code could be
kept in a separate file and used in multiple programs. Most
all modern 3GL’s have this same capability, even today’s
Web-based languages like HTML and JavaScript on the client
side, and PHP (on the server side). HTML has “server side
includes”; JavaScript has “.js” and “.css” files; and PHP has
“require” files (“.inc”). Often used in conjunction with these
“include” files is the procedure capability where some code
is compartmentalized to perform a particular task, and that
code can be sent arguments and possibly also return argu-
ments. In different 3GLs this might be called “subroutines”

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/object-oriented-software-reuse-business/13994

Related Content

Moderation in Government-Run Online Fora
Arthur Edwardsand Scott Wright (2009). Encyclopedia of Information Science and Technology, Second Edition

(pp. 2682-2688).

www.irma-international.org/chapter/moderation-government-run-online-fora/13966

Digital Identity in Current Networks
Kumbesan Sandrasegaranand Xiaoan Huang (2009). Encyclopedia of Information Science and Technology,

Second Edition (pp. 1125-1132).

www.irma-international.org/chapter/digital-identity-current-networks/13717

Using Pattern Recognition in Decoding Hazard Analysis and Critical Control Points (HACCP) for

Quality Assurance: The Case for a Start-up Company
Rahul Bhaskarand Au Vo (2014). Journal of Cases on Information Technology (pp. 60-72).

www.irma-international.org/article/using-pattern-recognition-in-decoding-hazard-analysis-and-critical-control-points-haccp-

for-quality-assurance/109518

Towards Renewed Business-IT Alignment Models in the Digital Era: The Impact of Data Inclusion
Nabyla Daidj (2022). Information Resources Management Journal (pp. 1-13).

www.irma-international.org/article/towards-renewed-business-it-alignment-models-in-the-digital-era/298972

Salary Differences Between Male and Female Software Developers
Ronald Dattero, Stuart D. Galupand Jing “Jim” Quan (2007). Emerging Information Resources Management

and Technologies (pp. 24-42).

www.irma-international.org/chapter/salary-differences-between-male-female/10093

http://www.igi-global.com/chapter/object-oriented-software-reuse-business/13994
http://www.igi-global.com/chapter/object-oriented-software-reuse-business/13994
http://www.irma-international.org/chapter/moderation-government-run-online-fora/13966
http://www.irma-international.org/chapter/digital-identity-current-networks/13717
http://www.irma-international.org/article/using-pattern-recognition-in-decoding-hazard-analysis-and-critical-control-points-haccp-for-quality-assurance/109518
http://www.irma-international.org/article/using-pattern-recognition-in-decoding-hazard-analysis-and-critical-control-points-haccp-for-quality-assurance/109518
http://www.irma-international.org/article/towards-renewed-business-it-alignment-models-in-the-digital-era/298972
http://www.irma-international.org/chapter/salary-differences-between-male-female/10093

