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IntroductIon

The robustness analysis for neural networks aims at evaluating 
the influence on accuracy induced by perturbations affecting 
the computational flow; as such it allows the designer for 
estimating the resilience of the neural model w.r.t perturba-
tions. In the literature, the robustness analysis of neural 
networks generally focuses on the effects of perturbations 
affecting biases and weights. The study of the network’s 
parameters is relevant both from the theoretical and the ap-
plication point of view, since free parameters characterize 
the “knowledge space” of the neural model and, hence, its 
intrinsic functionality. 

A robustness analysis must also be taken into account 
when implementing a neural network (or the intelligent com-
putational system into which a neural network is inserted) in 
a physical device or in intelligent wireless sensor networks. 
In these contexts, perturbations affecting the weights of a 
neural network abstract uncertainties such as finite precision 
representations, fluctuations of the parameters represent-
ing the weights in analog solutions (e.g., associated with 
the production process of a physical component), ageing 
effects or more complex, and subtle uncertainties in mixed 
implementations. 

Background

The sensitivity/robustness issue has been widely addressed in 
the neural network community with a particular focus on spe-
cific neural topologies. In particular, when the neural network 
is composed of linear units, the relationship between pertur-
bations and the induced performance loss can be obtained in 
a closed form (Alippi & Briozzo, 1998). Conversely, when 
the neural topology is non-linear, we have either to assume 
the small perturbation hypothesis or particular assumptions 
about the stochastic nature of the neural computation (e.g., 
see Alippi (2002a), Alippi et al. (1998), and Pichè, 1995); 
unfortunately, such hypotheses are not always satisfied in 
real applications. Another classic approach requires expand-

ing the neural computation with Taylor around the nominal 
value of the trained weights. A subsequent linearized analysis 
follows, which allows the researcher to solve the sensitivity 
issue problem (Pichè, 1995). This last approach has been 
widely used in the implementation design of neural networks 
where the small perturbation hypothesis abstracts small errors 
introduced by finite precision representations of the weights 
(Dundar & Rose, 1995; Holt & Hwang, 1993). Again, the 
validity of the analysis depends on the validity of the small 
perturbation hypothesis. 

Differently, other authors avoid the small perturbation 
assumption by focusing the attention on very specific neural 
network topologies and/or by introducing particular assump-
tions regarding the distribution of perturbations, internal 
neural variables, and inputs as done for Madalines neural 
networks (Alippi, Piuri, & Sami, 1995; Stevenson, Winter, 
Widrow, 1990). 

Some other authors tackle the robustness issue differently 
by suggesting techniques leading to neural networks with 
improved robustness ability by acting on the learning phase 
(e.g., see Alippi, 1999) or by introducing modular redundancy 
(Edwards & Murray, 1998); though, no robustness indexes 
are suggested there. The robustness of neural networks with 
respect to hardware implementations were also studied in 
Hereford and Kuyucu (2005) and Nugent, Kenyon, and 
Porter (2004) where authors proposed evolutionary and 
adaptive approaches.

Again, the study of robustness over training time has been 
evaluated for neural networks in the large, without assuming 
the small perturbation hypothesis (Alippi, Sana, & Scotti, 
2004). In this direction, other authors have addressed the 
issue of the robustness analysis during the training phase 
(Manic & Wilamowski, 2002; Qin Juanyin, Wei Wei, & 
Wang Pan, 2004) by suggesting a genetic approach or by 
considering the use of the regression theory.

An overview of the sensitivity issues in neural networks 
can be found in Ng, Yeung, Xi-Zhao, and Cloete, (2004).

In this article, we suggest a robustness/sensitivity analysis 
in the large (i.e., without assuming constraints on the size or 
nature of the perturbation); as such, the small perturbation hy-
pothesis becomes only a subcase of the theory. The suggested 
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sensitivity/robustness analysis can be applied to ALL neural 
network models (including recurrent neural models) involved 
in system identification, control signal/image processing 
and automation-based applications without any restriction 
to study the relationship between perturbations affecting the 
knowledge space and the induced accuracy loss.

a roBuStnESS anaLySIS In tHE 
LargE

In the following we consider a generic neural network 
implementing the ŷ = f (θ, x)  function where ˆ is the weight 
vector of the trained neural network. 

In several neural models, and in particular in those related 
to system identification and control, the relationship between 
the inputs and the output of the system are captured by 
considering a regression vector ϕ, which contains a limited 
time-window of actual and past inputs, outputs, and -pos-
sibly- predicted outputs. 

Of particular interest are those models, which can be 
represented by means of the model structures ŷ(t) = f (ϕ) 
where function f (·) is a regression-type neural network, 
characterized by Nϕ inputs, Nh non-linear hidden units, and 
a single effective linear/non-linear output (Hassoun, 1995; 
Hertz, Krog, & Palmer, 1991; Ljung, 1987; Ljung, Sjoberg, 
& Hjalmarsson, 1996). 

We denote by y∆(x) = f∆(θ, ∆, x) the mathematical de-
scription of the perturbed computation and by ∆ ∈	D ⊆	ℜp 
a generic p-dimensional perturbation vector, a component 
for each independent perturbation affecting the network 
weights of model ŷ(t). The perturbation space D, is char-
acterized in stochastic terms by providing the probability 
density function pdfD. 

To measure the discrepancy between y∆(x) and y(t) or ŷ(t) 
we consider a generic loss function U(D). A common example 
for U is the Mean Square Error –MSE- loss function: 
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but a generic Lebesgue measurable loss function with respect 
to D can be taken into account (Jech, 1978). The formalization 
of the impact of perturbation on the performance function 
can be simply derived as:

Definition: Robustness Index

We say that a neural network is robust at level  in D, when 
the robustness index  is the minimum positive value for 
which:

U(D) ≤ , ∀	D	∈	D,	∀g	≥	 .   (2)

Immediately, from the definition of robustness index, we 
have that a generic neural network NN1 is more robust than 
another NN2 iff  1 2< ; the property holds independently 
from the topology of the two neural networks.

The main problem related to the determination of the 
robustness index  is that we have to compute U(D), ∀	D	∈	
D if we wish a tight bound. The -identification problem is 
therefore intractable from a computational point of view if 
we relax all assumptions made in the literature as we do. 

To deal with the computational aspect we associate a 
dual probabilistic problem to (2):

robustness Index: dual Problem

We say that a neural network is robust at level  in D with 
confidence h, when  is the minimum positive value for 
which: 

Pr(U(D) ≤ ) ≥ h  holds ∀	D	∈	D,	∀g	≥	 .  (3)

The probabilistic problem is weaker than the deterministic 
one since it tolerates the existence of a set of perturbations 
(whose measure according to Lebesgue is 1-h) for which u(D) 
>  . In other words, not more than 100h% of perturbations 
D	∈	D will generate a loss in performance larger than . 

Probabilistic and deterministic problems are “close” to 
each other when we choose, as we do, h=1. 

The non-linearity with respect to D and the lack of a 
priori assumptions regarding the neural network do not allow 
computing (2) in a closed form for the general perturba-
tion case. The analysis, which would imply testing U(D) in 
correspondence with a continuous perturbation space, can 
be solved by resorting to probability according to the dual 
problem and by applying randomised algorithms (Alippi, 
2002b; Bai, Tempo, & Fu, 1997; Tempo & Dabbene, 1999; 
Vidyasagar, 1996, 1998) to solve the robustness/sensitivity 
problem.

randoMIZEd aLgorItHMS and 
PErturBatIon anaLySIS 

In the following we denote by pg = Pr{U(D) ≤ }the probability 
that the loss in performance associated with perturbations 
in D is below a given—but arbitrary—value g. 

Probability pg is unknown, it cannot be computed in a 
form for a generic U function and neural network topol-
ogy, and its evaluation requires exploration of the whole 
perturbation space D.

Anyway, the unknown probability pg can be estimated by 
sampling D with N independent and identically distributed 
samples Di (intuitively a sufficiently large random sample 
explores the space); extraction must be carried out according 
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