
3396 Category: IT Security & Ethics

Security Issues in Mobile Code Paradigms
Simão Melo de Sousa
University of Beira Interior, Portugal

Mário M. Freire
University of Beira Interior, Portugal

Rui C. Cardoso
University of Beira Interior, Portugal

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Unlike mobile computing, in which hardware moves, mobile
code moves from nodes to other nodes and can change the
machines where it is executed. A paradigmatic example of
such mobile code are Java applets that can be downloaded
from a distant machine and executed by a virtual machine
embedded in a browser. Multi-application smart cards (like
Javacards) are an example of an execution environment
that allows the loading and the execution of (mobile) pro-
grams into a card after its issuance. Code mobility allows
the software reconfiguration without delivering a physical
support, as done by Sun initially with Java to reprogram
cable TV boxes, or nowadays, by Microsoft to promptly
distribute software patches. PostScript files are another type
of mobile programs which execute in printers to produce
graphic images. Mobile code may also be used in distributed
systems to adapt autonomously in order to balance loads or
compensate for hardware failures (Brooks, 2004). Mobile
code has received a great deal of interest as a promising
solution to increase system flexibility, scalability, and reli-
ability. However, to reach such objectives, some issues need
to be matured, namely security issues. This article addresses
security issues in mobile code paradigms.

BACKGROUND

Several mobile code paradigms have been reported (Brooks,
2004; Brooks & Orr, 2002; Fuggetta, Picco, & Vigna, 1998;
Milojicic, Douglis, & Wheeler, 1999; Tennenhouse, Smith,
Sincoskie, Wetherall, & Minden, 1997; Wu, Agrawal, & Ab-
badi, 1999). These paradigms differ on where code is executed
and who determines when mobility occurs (Brooks & Orr,
2002; Brooks, 2004) and can be classified as follows:

• Client-Server: The user node invokes code resident on
a distant node: the server or program node. This node
fetches the required data from data nodes, executes the
invoked program, and returns the result to the user node.

Examples include the common object request broker
architecture. CORBA integrates remote procedure
calls (RPCs) with the object-oriented paradigm.

• Remote Evaluation: The user node requests the
execution of code resident on a distant node. This
node uploads the code to the node containing the data
needed for its execution. The execution takes place in
this node, and the result is then sent to the user node.
Examples include CORBA, Simple Object Access
Protocol (SOAP) and Web Services.

• Code-On-Demand: The user node requests the execu-
tion of code resident on a distant node. This code is
downloaded on user node and locally executed. Ex-
amples include Java applets and Active X programs.

• Process Migration: The operating system dispatches
processes from one node to others nodes in order to bal-
ance the load. Examples include Mosix and Sprite.

• Mobile Agents: The user node executes a program,
called agent, which moves, along with its execution
context, from node to node. The decision to move
from one node to another node or to execute a specific
set of operations on a particular node is made by the
agent itself. The result of the execution is, at the end,
transmitted within the program to the user node. There
are several agent and multi-agent platforms.

• Active Networks: In this paradigm, the network con-
figuration and infrastructure can be modified by the
transmitted packets. Here, the packets act as mobile
code. An example would be Capsules.

A mobile agent is a program that encapsulates code,
data, and execution context. The mobile agent is sent by
the client to another node. Unlike a procedure call, the
agent does not have to return data to the client. The agent
can migrate to other node, send information to the client,
or come back to the client. However, the efficiency of each
approach depends on network configuration and the size of
programs and data files.

Security Issues in Mobile Code Paradigms

S

 3397

SECURITY ISSUES IN MOBILE CODE

One of the major challenges in the context of mobile code
is the safety of the execution of untrusted code. This con-
cern occurs naturally when we verify that mobile code to
be executed comes from an eventually unknown source, or
it was designed or compiled by unknown methods. In fact,
the code may have been produced or changed by malicious
sources. Thus, an execution environment for mobile code
must be able to execute mobile code without allowing it to
produce damages in the case of being a malicious code.

 From a theoretical point of view, the problem of stating
if a given program is inoffensive or malicious is not decid-
able in general. Thus, the quest of finding a universal filter
that rejects every malicious code and accepts innocuous
programs is an utopia. It is indeed very hard to universally
and formally define what is a malicious program is. However,
there exist several partial solutions which increase the safety
of execution environments. They can be classified in these
four approaches (Rubin & Geer, 1998; Zachary, 2003):

• Sandboxes, which limit or control the context in which
code is executed;

• Code signing, which ensures that code comes from a
trusted source and its integrity;

• Firewalls, which limits the accessibility; and
• Proof-carrying code (PCC), in which code carries

explicit proof of its safety.

 The first approach consists in the isolation of the code
execution zone. Each mobile program is executed within a
controlled context and isolated from the other processes (in-
cluding memory). Control is assured by runtime monitoring
of the performed operations. For instance, sensitive operations
(whether operation on resources such as disks, memory, etc.,
or operations such as communications or data/files handling)
may be forbidden or, at least, supervised. Enforcing secu-
rity policies by confinement and runtime access control is
relatively easy to implement (when compared with other
approaches), easy to use, and provides a reasonable level
of confidence. A successful example of such approach is the
Java virtual machine and its security manager mechanism.
However, runtime checking induces a penalty in terms of
execution performance. In the same vein, access control
policies limit the computational ability of mobile code (for
instance, an innocuous applet could have access to the whole
instruction set).

The next approach, the code signing approach, allows
the execution of code which presents enough credentials.
This mechanism is based on the extraction and the verifica-
tion of a digital signature which is included in the code to
be executed. This signature allows the identification of the
code producer and the code integrity. If code comes from

a source identified as secure and if the code has not been
changed since it had to leave the source, then the execution
environment may allow its execution. Such a mechanism
takes place before the execution stage. Unfortunately, it
does not provide information about the actions performed
by the program and must be associated with other security
mechanisms. Therefore, most popular mobile code execu-
tion/support systems such as Java and .NET integrate a
combination of the two approaches, since this increases the
flexibility of policy securities.

Another way to guarantee the security in a mobile context
is based on the restriction and control of the mobility or the
communication capability. These mechanisms rely on fire-
walls and other similar mechanisms. This approach allows
precise control of the generated interactions by the executed
program. However, since this mechanism acts in runtime, it
leads to performance degradation of program execution and
of the infrastructure that supports the execution. Another
drawback is that the safety cannot be fulfilled exclusively
in terms of safe interaction, but this approach can be used
in conjunction to other security mechanisms.

 Recent and emerging approaches try to minimize the
need of runtime verification. Such approaches are known
as proof-carrying code (Appel, 2001; Appel & Felty,
2001;Barthe, Grégoire, Kunz, & Rezk, 2006; Colby, Lee,
Necula, Blau, Plesko, & Cline, 2000; Hamid, Shao, Trifonov,
Monnier, & Ni, 2002) or static program analysis. These
mechanisms operate on the code as soon as it is received
and can get conclusions about the safety of the program
without requiring its execution. From the code consumer
point of view, the penalty is located in the loading time.
The underlying principle is the following: the code to be
executed is enriched in such a way that it contains enough
information for the execution environment to verify the
conformance of the program with respect to the security
policies of the code consumer. If the program is approved,
then it can be executed in a safe way and these policies do
not need to be verified at runtime. The several approaches
in these families of mechanisms differ in the quantity of the
information required in the code to be executed. This infor-
mation can vary from complete demonstrations (as the name
“proof-carrying code” suggests) to simple type annotations.
For instance, Java bytecode, the code executed by the Java
virtual machine, is a typed low level language. This allows
the Bytecode Verifier (BCV) of the Java platform to perform
the static analysis of several safety policies. Because proof-
carrying code is an emerging approach and a very promising
technology (as witness recent initiatives like the European
project MOBIUS IST 15905, the literature, or the emergence
of certifying compilers (see the next section) for languages
like JAVA), we will postpone its detailed description to the
next section.

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/security-issues-mobile-code-paradigms/14077

Related Content

Modeling Back Office Operations at Greenfield Online's Digital Consumer Store
Gerald C. Campbell, Christopher L. Huntleyand Michael R. Anderson (2003). Annals of Cases on Information

Technology: Volume 5 (pp. 358-369).

www.irma-international.org/article/modeling-back-office-operations-greenfield/44552

Information and Communication Technology for E-Regions
Koray Velibeyogluand Tan Yigitcanlar (2009). Encyclopedia of Information Science and Technology, Second

Edition (pp. 1944-1949).

www.irma-international.org/chapter/information-communication-technology-regions/13844

K
 (2007). Dictionary of Information Science and Technology (pp. 379-399).

www.irma-international.org/chapter//119572

The Extent and Nature of Computer-Based Records Management in the United States
Terry D. Lundgrenand Carol A. Lundgren (1992). Information Resources Management Journal (pp. 1-8).

www.irma-international.org/article/extent-nature-computer-based-records/50955

The Rise and Fall of CyberGold.com
John E. Peltierand Michael J. Gallivan (2004). Annals of Cases on Information Technology: Volume 6 (pp.

312-329).

www.irma-international.org/chapter/rise-fall-cybergold-com/44584

http://www.igi-global.com/chapter/security-issues-mobile-code-paradigms/14077
http://www.igi-global.com/chapter/security-issues-mobile-code-paradigms/14077
http://www.irma-international.org/article/modeling-back-office-operations-greenfield/44552
http://www.irma-international.org/chapter/information-communication-technology-regions/13844
http://www.irma-international.org/chapter//119572
http://www.irma-international.org/article/extent-nature-computer-based-records/50955
http://www.irma-international.org/chapter/rise-fall-cybergold-com/44584

