
 1125

�
�"�������	������
��������
��-
�����	
��������"
�

John B. Nash
Stanford University, USA

Christoph Richter
University of Hannover, Germany

Heidrun Allert
University of Hannover, Germany

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

The call for the integration of program evaluation into the
development of computer-supported learning environ-
ments is ever increasing. Pushed not only by demands
from policy makers and grant givers for more accountabil-
ity within lean times, this trend is due also to the fact that
outcomes of computer-supported learning environment
projects often fall short of the expectations held by the
project teams. The discrepancy between the targets set
by the project staff and the outcomes achieved suggests
there is a need for formative evaluation approaches (ver-
sus summative approaches) that facilitate the elicitation
of information that can be used to improve a program while
it is in its development stage (c.p., Worthen, Sanders &
Fitzpatrick, 1997). While the call for formative evaluation
as an integral part of projects that aim to develop complex
socio-technical systems is widely accepted, we note a
lack of theoretical frameworks that reflect the particulari-
ties of these kind of systems and the ways they evolve
(c.p., Keil-Slawik, 1999). This is of crucial importance, as
formative evaluation will only be an accepted and effec-
tive part of a project if it provides information useful for
the project staff. Below we outline the obstacles evalua-
tion faces with regard to projects that design computer-
supported learning environments, and discuss two prom-
ising approaches that can be used in complimentary
fashion.

BACKGROUND

According to Worthen et al. (1997), evaluation is “the
identification, clarification, and application of defensible
criteria to determine an evaluation object’s value (worth
or merit), quality, utility, effectiveness, or significance in
relation to those criteria.” In this regard evaluation can
serve different purposes. Patton (1997) distinguishes

between judgment-, knowledge- and improvement-ori-
ented evaluations. We focus on improvement-oriented
evaluation approaches. We stress that evaluation can
facilitate decision making and reveal information that can
be used to improve not only the project itself, but also
outcomes within the project’s target population. The
conceptualization of evaluation as an improvement-ori-
ented and formative activity reveals its proximity to de-
sign activities. In fact this kind of evaluative activity is an
integral part of any design process, whether it is explicitly
mentioned or not. Accordingly it is not the question if one
should evaluate, but which evaluation methods generate
the most useful information in order to improve the pro-
gram. This question can only be answered by facing the
characteristics and obstacles of designing computer-
supported learning environments.

Keil-Slawik (1999) points out that one of the main
challenges in evaluating computer-supported learning
environments is that some goals and opportunities can
spontaneously arise in the course of the development
process and are thus not specified in advance. We believe
that this is due to the fact that design, in this context,
addresses ill-structured and situated problems. The de-
sign and implementation of computer-supported learning
environments, which can be viewed as a response to a
perceived problem, also generates new problems as it is
designed. Furthermore every computer-supported learn-
ing experience takes place in a unique social context that
contributes to the success of an intervention or prevents
it. Therefore evaluation requires that designers pay atten-
tion to evolutionary and cyclic processes and situational
factors. As Weiss notes, “Much evaluation is done by
investigating outcomes without much attention to the
paths by which they were produced” (1998, p. 55).

For developers designing projects at the intersection
of information and communication technology (ICT) and
the learning sciences, evaluation is difficult. Evaluation
efforts are often subverted by a myriad of confounding
variables, leading to a “garbage in, garbage out” effect;

1126

Evaluating Computer-Supported Learning Initiatives

the evaluation cannot be better than the parameters that
were built in the project from the start (Nash, Plugge &
Eurlings, 2001). Leaving key parameters of evaluative
thinking out of computer-supported learning projects is
exacerbated by the fact that many investigators lack the
tools and expertise necessary to cope with the complexity
they face in addressing the field of learning.

We strongly advocate leveraging the innate ability of
members of the computer science and engineering com-
munities to engage in “design thinking” and turn this
ability into a set of practices that naturally becomes
program evaluation, thereby making an assessment of the
usefulness of ICT tools for learning a natural occurrence
(and a manifest activity) in any computer-supported learn-
ing project.

Design-Oriented Evaluation for
Computer-Supported Learning
Environments

There are two approaches that inherently relate them-
selves to design as well as to evaluation. Therefore they
are useful tools for designers of computer-supported
learning initiatives. These two perspectives, discussed
below, are scenario-based design and program theory
evaluation. Both approaches assume that the ultimate
goal of a project should be at the center of the design and
evaluation discussion, ensuring a project is not about
only developing a usable tool or system, but is about
developing a useful tool or system that improves out-
comes for the user. Beyond this common ground, these
approaches are rather complementary to each other and it
is reasonable to use them in conjunction with one another.

Scenario-Based Approaches

Scenario-based approaches are widely used in the fields
of software engineering, requirements engineering, hu-
man computer interaction, and information systems
(Rolland et al., 1996). Scenarios are a method to model the
universe of discourse of an application, that is, the envi-
ronment in which a system, technical or non-technical,
will be deployed. A scenario is a concrete story about use
of an innovative tool and/or social interactions (Carroll,
2000). Scenarios include protagonists with individual
goals or objectives and reflect exemplary sequences of
actions and events. They refer to observable behavior as
well as mental processes, and also cover situational
details assumed to affect the course of actions (Rosson
& Carroll, 2002). Additionally it might explicitly refer to the
underlying culture, norms, and values (see Bødker &
Christiansen, 1997). That said, scenarios usually focus on
specific situations, only enlighten some important as-

pects, and generally do not include every eventuality
(e.g., Benner, Feather, Johnson & Zorman, 1993).

Beside their use in the design process, scenarios can
also be used for purposes of formative evaluation. First of
all, as a means of communication, they are a valuable
resource for identifying underlying assumptions regard-
ing the program under development. Stakeholder assump-
tions might include those related to instructional theories,
the learner, the environmental context, and its impact on
learning or technical requirements. Underlying assump-
tions such as these are typically hidden from view of
others, but easily developed and strongly held within
individuals developing computer-supported learning
environments. Scenarios help to reveal the thinking of
designers so that others can participate in the design
process and questionable assumptions can come under
scrutiny. The use of scenarios also allows identification
of pros and cons of a certain decision within the design
process. In this vein Carroll (2000) suggests employing
“claim analysis.” Claims are the positive or negative,
desirable and undesirable consequences related to a
certain characteristic of a scenario. Assuming that every
feature of a proposed solution usually will entail both
positive and negative effects helps to reflect on the
current solution and might provoke alternative proposals.
The analysis of claims is thereby not limited to an intuitive
ad hoc evaluation, but also can bring forth an explicit
hypothesis to be addressed in a subsequent survey.

Program Theory Evaluation

Program theory evaluation, also known as theory-based
evaluation, assumes that underlying any initiative or
project is an explicit or latent “theory” (or “theories”)
about how the initiative or project is meant to change
outcomes. An evaluator should surface those theories
and lay them out in as fine detail as possible, identifying
all the assumptions and sub-assumptions built into the
program (Weiss, 1995). This approach has been promoted
as useful in evaluating computer-supported learning
projects (Strömdahl & Langerth-Zetterman, 2000; Nash,
Plugge & Eurlings, 2001) where investigators across dis-
ciplines find it appealing. For instance, for designers (in
mechanical engineering or computer science), program
theory evaluation reminds them of their own use of the
“design rationale.” And among economists, program
theory evaluation reminds them of total quality manage-
ment (TQM). In the program theory approach (Weiss,
1995, 1998; Chen, 1989; Chen & Rossi, 1987), one con-
structs a project’s “theory of change” or “program logic”
by asking the various stakeholders, “What is the project
designed to accomplish, and how are its components
intended to get it there?” The process helps the project
stakeholders and the evaluation team to identify and come

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/evaluating-computer-supported-learning-

initiatives/14397

Related Content

Rx for Integration: Lessons Learned in Health Care EAI
Hamid Nemati, Scott Stewartand Faye Sherrill-Huffman (2003). Annals of Cases on Information

Technology: Volume 5 (pp. 414-430).

www.irma-international.org/chapter/integration-lessons-learned-health-care/44556

Application of E-Commerce Recommendation Algorithm in Consumer Preference Prediction
Wei Wang (2022). Journal of Cases on Information Technology (pp. 1-28).

www.irma-international.org/article/application-of-e-commerce-recommendation-algorithm-in-consumer-preference-

prediction/306977

Design and Implementation of Scenario Management Systems
M. Daud Ahmedand David Sundaram (2009). Encyclopedia of Information Science and Technology,

Second Edition (pp. 1030-1039).

www.irma-international.org/chapter/design-implementation-scenario-management-systems/13702

Toward a Greater Understanding of End-Users' Acceptance of ERP Systems
Fiona F. Nah, Xin Tanand Soon E. Teh (2006). Advanced Topics in Information Resources Management,

Volume 5 (pp. 143-163).

www.irma-international.org/chapter/toward-greater-understanding-end-users/4646

Disaster Recovery Planning for Information Systems
Sooun Leeand Scott Ross (1995). Information Resources Management Journal (pp. 18-24).

www.irma-international.org/article/disaster-recovery-planning-information-systems/51011

http://www.igi-global.com/chapter/evaluating-computer-supported-learning-initiatives/14397
http://www.igi-global.com/chapter/evaluating-computer-supported-learning-initiatives/14397
http://www.irma-international.org/chapter/integration-lessons-learned-health-care/44556
http://www.irma-international.org/article/application-of-e-commerce-recommendation-algorithm-in-consumer-preference-prediction/306977
http://www.irma-international.org/article/application-of-e-commerce-recommendation-algorithm-in-consumer-preference-prediction/306977
http://www.irma-international.org/chapter/design-implementation-scenario-management-systems/13702
http://www.irma-international.org/chapter/toward-greater-understanding-end-users/4646
http://www.irma-international.org/article/disaster-recovery-planning-information-systems/51011

