
 1201

�
)������
"
���
�����'
����"
��	
���#��
�
����
��

P. Kefalas
CITY College, Greece

M. Holcombe
University of Sheffield, UK

G. Eleftherakis
CITY College, Greece

M. Gheorghe
University of Sheffield, UK

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Recent advances in both the testing and verification of
software based on formal specifications have reached a
point where the ideas can be applied in a powerful way in
the design of agent-based systems. The software engi-
neering research has highlighted a number of important
issues: the importance of the type of modelling technique
used; the careful design of the model to enable powerful
testing techniques to be used; the automated verification
of the behavioural properties of the system; and the need
to provide a mechanism for translating the formal models
into executable software in a simple and transparent way.

An agent is an encapsulated computer system that is
situated in some environment and that is capable of
flexible, autonomous action in that environment in order
to meet its design objectives (Jennings, 2000). There are
two fundamental concepts associated with any dynamic
or reactive system (Holcombe & Ipate, 1998): the environ-
ment, which could be precisely or ill-specified or even
completely unknown and the agent that will be respond-
ing to environmental changes by changing its basic
parameters and possibly affecting the environment as
well. Agents, as highly dynamic systems, are concerned
with three essential factors: a set of appropriate environ-
mental stimuli or inputs, a set of internal states of the
agent, and a rule that relates the two above and determines
what the agent state will change to if a particular input
arrives while the agent is in a particular state.

One of the challenges that emerges in intelligent agent
engineering is to develop agent models and agent imple-
mentations that are “correct.” The criteria for “correct-
ness” are (Ipate & Holcombe, 1998): the initial agent model
should match the requirements, the agent model should
satisfy any necessary properties in order to meet its
design objectives, and the implementation should pass all

tests constructed using a complete functional test-gen-
eration method. All the above criteria are closely related
to stages of agent system development, i.e., modelling,
validation, verification, and testing.

BACKGROUND: FORMAL METHODS
AND AGENT-BASED SYSTEMS

Although agent-oriented software engineering aims to
manage the inherent complexity of software systems
(Wooldridge & Ciancarini, 2001; Jennings, 2001), there is
still no evidence to suggest that any methodology pro-
posed leads toward “correct” systems. In the last few
decades, there has been strong debate on whether formal
methods can achieve this goal. Software system specifi-
cation has centred on the use of models of data types,
either functional or relational models, such as Z (Spivey,
1989) or VDM (Jones, 1990), or axiomatic ones, such as
OBJ (Futatsugi et al., 1985). Although these have led to
some considerable advances in software design, they lack
the ability to express the dynamics of the system. Also,
transforming an implicit formal description into an effec-
tive working system is not straightforward. Other formal
methods, such as finite state machines (Wulf et al., 1981)
or Petri Nets (Reisig, 1985) capture the essential feature,
which is “change,” but fail to describe the system com-
pletely, because there is little or no reference to the
internal data and how these data are affected by each
operation in the state transition diagram. Other methods,
like statecharts (Harel 1987), capture the requirements of
dynamic behaviour and modelling of data but are informal
with respect to clarity and semantics. So far, little atten-
tion has been paid in formal methods that could facilitate
all crucial stages of “correct” system development, mod-
elling, verification, and testing.

1202

Formal Development of Reactive Agent-Based Systems

In agent-oriented engineering, there have been sev-
eral attempts to use formal methods, each one focusing on
different aspects of agent systems development. One was
to formalise the PRS (procedural reasoning system), a
variant of the BDI architecture (Rao & Georgeff, 1995),
with the use of Z, in order to understand the architecture
in a better way, to be able to move to the implementation
through refinement of the specification, and to be able to
develop proof theories for the architecture (D’Inverno et
al., 1998). Trying to capture the dynamics of an agent
system, Rosenschein and Kaebling (1995) viewed an
agent as a situated automaton that generates a mapping
from inputs to outputs, mediated by its internal state.
Brazier et al. (1995) developed the DESIRE framework,
which focuses on the specification of the dynamics of the
reasoning and acting behaviour of multiagent systems. In
an attempt to verify whether properties of agent models
are true, work has been done on model checking of
multiagent systems with reuse of existing technology and
tools (Benerecetti et al., 1999, Rao & Georgeff, 1993).
Toward implementation of agent systems, Attoui and
Hasbani (1997) focused on program generation of reactive
systems through a formal transformation process. A wider
approach is taken by Fisher and Wooldridge (1997), who
utilised Concurrent METATEM in order to formally specify
multiagent systems and then directly execute the specifi-
cation while verifying important temporal properties of
the system. Finally, in a less formal approach, extensions
to Unified Modelling Language (UML) to accommodate
the distinctive requirements of agents (AUML) were
proposed (Odell et al., 2000).

X-MACHINES FOR AGENT-BASED
SYSTEM DEVELOPMENT

An X-machine is a general computational machine
(Eilenberg, 1974) that resembles a finite state machine but
with two significant differences: there is memory attached
to the machine, and the transitions are labeled with func-
tions that operate on inputs and memory values. The X-
machine formal method forms the basis for a specification
language with great potential value to software engi-
neers, because they can facilitate modelling of agents that
demand remembering as well as reactiveness. Figure 1
shows the model of an ant-like agent that searches for
food but also remembers food positions in order to set up
its next goals. Many other biological processes seem to
behave like agents, as, for example, a colony of foraging
bees, tissue cells, etc. (Kefalas et al., 2003a; Gheorghe et
al., 2001; Kefalas et al., 2003b). Formally, the definition of
the X-machine requires the complete description of a set
of inputs, outputs, and states; a memory tuple with typed
elements; a set of functions and transitions; and finally,
an initial state and a memory value (Holcombe, 1988).

 Having constructed a model of an agent as an X-
machine, it is possible to apply existing model-checking
techniques to verify its properties. CTL* is extended with
memory quantifier operators: M

x
 (for all memory instances)

and m
x
 (there exist memory instances) (Eleftherakis &

Kefalas, 2001). For example, in the ant-like agent, model
checking can verify whether food will eventually be
dropped in the nest by the formula: AG[¬M

x
(m

1
≠ none) ∨

EFM
x
(m

1
= none)], where m

1
 indicates the first element of

the memory tuple.

Figure 1. An X-machine that models an ant.

ignore food

move

move find_nest

got_lost

move_to_food

lift_food

find_nest

move_to_nest

stay_at_nest

find_food

lift_food

move_to_nest

drop_food

move_to_food

M = (FOOD∪{none}) × (COORD × COORD) × seq (COORD × COORD)

Foraging
Ant

LOOKING
FOR FOOD

AT FOOD

GOING BACK
TO NEST

MOVING
FREELY

AT NEST

2 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/formal-development-reactive-agent-based/14411

Related Content

AI Boosts Performance but Affects Employee Emotions
Kuo-Tai Cheng, Kirk Changand Hsing-Wei Tai (2022). Information Resources Management Journal (pp. 1-

18).

www.irma-international.org/article/ai-boosts-performance-but-affects-employee-emotions/314220

Organizational Urbanism: A Value Proposal for the Generation of Organizational Intelligence to

Healthcare Institutions – The Case of a Portuguese Hospital Center
Pedro Fernandes Anunciaçãoand Sónia Nunes (2016). Handbook of Research on Information Architecture

and Management in Modern Organizations (pp. 458-486).

www.irma-international.org/chapter/organizational-urbanism/135781

The Snakes and Ladders Game in E-Business: Digital Transformation at American Hardware

Depot
C. Ranganathanand Dong Back Seo (2006). Journal of Cases on Information Technology (pp. 1-12).

www.irma-international.org/article/snakes-ladders-game-business/3185

Selecting Success Criteria for Customer Solution Projects
Ville Otra-Aho (2017). International Journal of Information Technology Project Management (pp. 17-29).

www.irma-international.org/article/selecting-success-criteria-for-customer-solution-projects/187159

The Impact of Technological Frames on Knowledge Management Procedures
Chun-Tsung Chen (2009). Encyclopedia of Information Communication Technology (pp. 401-412).

www.irma-international.org/chapter/impact-technological-frames-knowledge-management/13386

http://www.igi-global.com/chapter/formal-development-reactive-agent-based/14411
http://www.irma-international.org/article/ai-boosts-performance-but-affects-employee-emotions/314220
http://www.irma-international.org/chapter/organizational-urbanism/135781
http://www.irma-international.org/article/snakes-ladders-game-business/3185
http://www.irma-international.org/article/selecting-success-criteria-for-customer-solution-projects/187159
http://www.irma-international.org/chapter/impact-technological-frames-knowledge-management/13386

