
 1555

�
����	�����	
$�0���������
,�	�������	
������0���
��
 �����
������

María Virginia Mauco
Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

Daniel Riesco
Universidad Nacional de San Luis, Argentina

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Formal methods help to develop more reliable and secure
software systems, and they are increasingly being ac-
cepted by industry. The RAISE1 Method (George et al.,
1995), for example, is intended for use on real develop-
ments, not just toy examples. This method includes a large
number of techniques and strategies for formal develop-
ment and proofs, as well as a formal specification lan-
guage, the RAISE Specification Language (RSL) (George
et al., 1992), and a set of tools (George et al., 2001).

Formal specifications may be used throughout the
software lifecycle, and they may be manipulated by auto-
mated tools for a wide variety of purposes such as model
checking, deductive verification, formal reuse of compo-
nents, and refinement from specification to implementa-
tion (van Lamsweerde, 2000a). However, they are not
easily accessible to people who are not familiar or comfort-
able with formal notations. This is particularly inconve-
nient during the first stages of system development, when
interaction with the stakeholders is very important. In
common practice, the analysis of a problem often starts
from interviews with the stakeholders, and this source of
information is heavily based on natural language.

System requirements must be described well enough
so that an agreement can be reached between the stake-
holders and the system developers on what the system
should and should not do. A major challenge with this is
that the stakeholders must be able to read and understand
the results of requirements capture. To meet this chal-
lenge we must use the language of the stakeholders to
describe these results (Jacobson, Booch & Rumbaugh,
1999). Stakeholder-oriented requirements engineering
techniques help to improve communication among stake-
holders and software engineers as they ease the develop-
ment of a first specification of a system which could be
validated with stakeholders and which could be the basis
for a formal development. Thus, we could take advantage
of both techniques to improve the final product.

Among the techniques proposed to formalize require-
ments elicitation and modeling, Leite’s Requirements
Baseline can be mentioned (Leite et al., 1997). Two of its

models are the Language Extended Lexicon (LEL) and the
Scenario Model. LEL and scenarios provide a detailed
description of an application domain, and as they are
written in natural language, they are closer to stakeholder’s
world. However, an important point is how to fruitfully use
all this information during the software development
process.

To address the problems stated above, we have been
working in the integration of stakeholder-oriented re-
quirements engineering techniques with formal methods
in order to take advantage of the benefits of both of them.
In particular, our work is focused on the Requirements
Baseline and the RAISE Method. We have proposed a
three-step process to help in the definition of an initial
formal specification in RSL of a domain starting from
natural language models such as LEL and scenarios.
These steps are the derivation of types, the derivation of
functions, and the definition of modules. We have devel-
oped a preliminary set of heuristics that show how to
derive types and functions, and how to structure them in
modules by using LEL and scenarios information. We
have also proposed to represent the hierarchy of RSL
modules obtained using a layered architecture. This lay-
ered architecture is then the basis to start applying the
steps of the RAISE Method.

BACKGROUND

In spite of the wide variety of formal specification lan-
guages and modeling languages, such as the Unified
Modeling Language (UML) (Jacobson et al., 1999), natu-
ral language is still the method chosen for describing
software system requirements (Jacobson et al., 1999;
Sommerville & Sawyer, 1998; van Lamsweerde, 2000a).
However, the syntax and semantics of natural language,
even with its flexibility and expressiveness power, is not
formal enough to be used directly for prototyping, imple-
mentation, or verification of a system. Thus, the require-
ments document written in natural language has to be
reinterpreted by software engineers into a more formal
design on the way to a complete implementation. Some

1556

Integrating Requirements Engineering Techniques and Formal Methods

recent works (Lee, 2001; Lee & Bryant, 2002; Moreno
Capuchino, Juristo & Van de Riet, 2000; Nuseibeh &
Easterbrook, 2000, van Lamsweerde, 2000b) present dif-
ferent strategies for mapping requirements to, for ex-
ample, object-oriented models or formal specifications.

When using the RAISE Method, writing the initial RSL
specification is the most critical task because this speci-
fication must capture the requirements in a formal, precise
way (George, 2002). RSL specifications of many domains
have been developed by starting from informal descrip-
tions containing synopsis (introductory text that informs
what the domain is about), narrative (systematic descrip-
tion of all the phenomena of the domain), and terminology
(list of concise and informal definitions, alphabetically
ordered). Others also include a list of events. They can be
found in UNU/IIST´s Web site (www.iist.unu.edu). The
gap between these kind of descriptions and the corre-
sponding RSL formal specification is large, and thus, for
example, it is difficult and not always possible to check
whether the formal specification models what the informal
description does and vice versa.

As we had some experience in using the Requirements
Baseline, and we knew it had been used as the basis to an
object conceptual model (Leonardi, 2001), we consider the
possibility of using it as the first description of a domain
from which a formal specification in RSL could be later
derived.

THREE-STEP PROCESS TO
DERIVE A FORMAL SPECIFICATION

As an attempt to reduce the gap between stakeholders
and the formal methods world, we propose a technique to
derive an initial formal specification in RSL from require-
ments models, such as LEL and scenarios that are closer
to stakeholders’ language. The derivation of the specifi-
cation is structured in three steps: Derivation of Types,
Derivation of Functions, and Definition of Modules. They
are not strictly sequential; they can overlap or be carried
out in cycles. For example, function definitions can indi-
cate which type structures are preferable.

Derivation of Types

This step produces a set of abstract as well as concrete
types that model the relevant terms in the domain. We
perform the derivation of the types in two steps. First we
identify the types, and then we decide how to model them.
This way of defining types follows one of the key notions
of the RAISE Method (George et al., 1995): the step-wise
development.

The main goal of the identification step is to determine
an initial set of types that are necessary to model the

different entities present in the analyzed domain. This
initial set will be completed, or even modified, during the
remaining steps of the specification derivation. For ex-
ample, during the Definition of Modules Step, it may be
necessary to define a type to reflect the domain state.
Also, when defining functions, it may be useful to define
some new types to be used as result types of functions.
The LEL is the source of information during this step, as
LEL subjects and some objects represent the main compo-
nents or entities of the analyzed domain. In general, LEL
subjects and objects will correspond to types in the RSL
specification. In some cases, LEL verbs may also give rise
to the definition of more types, as when they represent an
activity that has its own data to save. However, in order
to define just the relevant types, we have suggested some
heuristics that can be found in Mauco, Riesco, and George
(2001a).

Once a preliminary set of types is defined and in order
to remove under-specification, we propose to return to
the information contained in the LEL and the Scenario
Model. In particular, the analysis of the notion, and
sometimes the behavioral response of each symbol that
motivated the definition of an abstract type, can help to
decide if the type could be developed into a more concrete
type. All the developments we suggest satisfy the imple-
mentation relation. In Mauco et al. (2001a), some heuris-
tics to assist in this task can be found. During this step,
it might be necessary to introduce some type definitions
that do not correspond to any entry in the LEL. They
appear, in general, when modeling components of some
other type. Symbols without an entry in the LEL may
represent an omission or a symbol considered outside the
application domain language. When an omission is de-
tected, it is necessary to return to the LEL to add the new
definition, and update the Scenario Model to maintain the
consistency between its vocabulary and the LEL itself.

Definition of Modules

This step helps to organize in modules all the types
produced by the Derivation of Types Step in order to
obtain a more legible and maintainable specification.
These modules would be later completed with the defini-
tion of functions in the next step, and probably they will
be completed with more type definitions.

A summary of the heuristics we propose to define for
the modules can be found in Mauco et al., (2001b). In
defining these heuristics, we closely followed the fea-
tures RSL modules should have according to the RAISE
Method (George et al., 1995; George, 2002). For example,
each module should have only one type of interest,
defining the appropriate functions to create, modify, and
observe values of the type, and the collection of modules
should be, as far as possible, hierarchically structured.

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/integrating-requirements-engineering-

techniques-formal/14473

Related Content

Personal Information Privacy and Internet Technology
Edward J. Szewczak (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 2272-

2276).

www.irma-international.org/chapter/personal-information-privacy-internet-technology/14597

Phishing Attack Detection using a Search Engine and Heuristics-based Technique
Brij B. Guptaand Ankit Kumar Jain (2020). Journal of Information Technology Research (pp. 94-109).

www.irma-international.org/article/phishing-attack-detection-using-a-search-engine-and-heuristics-based-

technique/249219

Selecting a Systems Development Methodology: A Contingency Framework
Mohamed El Louadi, Yannis A. Pollalisand James T.C. Teng (1991). Information Resources Management

Journal (pp. 11-20).

www.irma-international.org/article/selecting-systems-development-methodology/50941

Performance Appraisal Systems and Their Impact on Employee Performance: The Moderating

Role of Employee Motivation
Bhawna Chahar (2020). Information Resources Management Journal (pp. 17-32).

www.irma-international.org/article/performance-appraisal-systems-and-their-impact-on-employee-performance/262968

When IT Slows Down the Pace of Change: Upgrading Business Systems at Braebill Company
Michael A. Eiermanand Jakob H. Iversen (2009). Journal of Cases on Information Technology (pp. 22-41).

www.irma-international.org/article/when-slows-down-pace-change/3242

http://www.igi-global.com/chapter/integrating-requirements-engineering-techniques-formal/14473
http://www.igi-global.com/chapter/integrating-requirements-engineering-techniques-formal/14473
http://www.irma-international.org/chapter/personal-information-privacy-internet-technology/14597
http://www.irma-international.org/article/phishing-attack-detection-using-a-search-engine-and-heuristics-based-technique/249219
http://www.irma-international.org/article/phishing-attack-detection-using-a-search-engine-and-heuristics-based-technique/249219
http://www.irma-international.org/article/selecting-systems-development-methodology/50941
http://www.irma-international.org/article/performance-appraisal-systems-and-their-impact-on-employee-performance/262968
http://www.irma-international.org/article/when-slows-down-pace-change/3242

