
  2243

�
�����������	
���
���������������������������
�������

Daniel J. Buehrer
National Chung Cheng University, Taiwan, R.O.C.

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

WEB-BASED DEVELOPMENT

Web-based applications (Web services and service-ori-
ented architectures) can be run via a Web-based browser.
There are several approaches to writing such Web-based
applications. A lightweight approach is suitable for hand-
held devices. In this approach, a Java servlet or a JSP page
(Java 2 Platform, JSP), or an ASP application (Microsoft
.NET, ASP) generates HTML (Hypertext Markup Lan-
guage), XHTML, or XML documents (W3C Semantic
Web Activity, XHTML, XML) to be displayed by the
browser. Most browsers use an anchored URLs extension
(e.g., .doc, .jpg, .xml, etc.) to choose an appropriate plug-
in to display the URL when it is clicked. Besides display-
ing text and multimedia, Web servers and/or browsers can
also execute Java applets or scripting languages to read
and/or change persistent data. Previously, about 98% of
these data were stored in relational or object-relational
databases. However, recently more of these data are being
stored in XML-based documents. Often these documents
have an associated “schema” declaring the nesting of
tags and the types of primitive values, or an “ontology”
(Everett et al., 2002, Hunter, 2003) declaring classes,
attributes, and relations that are used in the document.

Databases, XML documents, and knowledge bases
have traditionally been only a small part of a company’s
programming environment. The goal of most develop-
ment environments is to use UML or entity-relation dia-
grams to analyze and design suitable classes, design
patterns, and active objects from other existing ones.
Web-based development environments (Stal, 2002) help
us to find suitable classes, design patterns, and active
objects on the Web, perhaps for a fee, or perhaps for a
limited development time. That is, in the future, the devel-
opment environment itself will be built on a distributed
knowledge base.

Will there be a programming language, and will it still
have explicit calls to SQL? Currently, scripting languages
have their own unique means of accessing SQL data-
bases, and the whole area of Web-based programming
and multimedia networking has become quite messy
(Weinstein & Gelman, 2003). Although J2EE’s Container-
Managed Persistency (CMP), JDO, and many object-

relational development environments provide ways to
hide SQL calls, security, and transactions, many applica-
tions may still choose to use the richer functionality of
direct JDBC.

Web-based development environments, however, are
forcing some changes in the way that persistent data are
stored. Heterogeneous databases can be said to have
failed to provide a sufficient platform for sharing data
because of the difficulty in integrating so many SQL meta-
data definitions. There was no “class hierarchy” to orga-
nize the definitions of the SQL tables, and small incompat-
ibilities in SQL definitions often caused major headaches.
Although ODBC and JDBC are now SQL standards, they
permit various implementations of the meta-data, and they
provide no standard way of “including” meta-data defini-
tions from other “superclass” tables. In order to counter
this lack of a class hierarchy in object-relational data-
bases, the Semantic Web Project is proposing to use
XML-based documents to share data and their declara-
tions.

How will the Web-based development environments
and their applications access Web databases? Will they
access SQL, XML, or both? The answer is almost certain
to be both, as well as other spreadsheets, natural lan-
guage documents, and multimedia.

ISSUES IN INTEGRATING XML AND
RELATIONAL DATABASES

As long as the application-tier, Web-tier or client-tier
programs access the data via a standard interface, it makes
little difference to the programmer if the persistent data are
stored in SQL databases or XML files. This interface
should take care of transactions (Ahamad & Chelliah,
2002) and security, sequencing set/get/add/remove calls
from multiple users and doing load balancing and fail-over
across multiple servers.

J2EE from the Java Community Process and
Microsoft’s .NET have the two major candidates for this
programmer interface. One goal of these platforms is to
hide the SQL and XML calls behind standardized set/get/
add/remove calls for enterprise components. However,



2244

Organizing Multimedia Objects by Using Class Algebra

SQL programming and XML programming are currently
fairly incompatible. There are several XML query lan-
guages for querying XML documents, and XSLT can be
used to reformat XML documents. There are numerous
XML schema mechanisms to enforce some type-check-
ing, but higher-level schema mechanisms, such as RDF-
Schema and OWL Ontologies (W3C RDF, OWL), are
really needed before attribute and relation assignments
can be strongly type-checked. OWL declarations essen-
tially take the place of Corba IDL declarations, OMG ODL
declarations, or SQL meta-data tables, by declaring ontol-
ogy namespaces, a class IS-A hierarchy, attribute types
and relation domains/ranges.

CLASS ALGEBRA’S ROLE

Class algebra (Buehrer, 2001; Buehrer & Chien, 2003;
Buehrer & Lee, 1999; Buehrer, Tse-Wen & Chih-Ming,
2001; Buehrer, Tse-Wen, Chih-Ming & Hou, 2001; Buehrer
& Wang, 2003) can serve as the theoretical basis for type-
checking both OWL-based and SQL-based set/get/add/
remove calls. Each SQL table is considered to be a class,
and each line of the table is an object. The primary key of
the object is used, along with the JNDI database service
name and the table name, as a unique object identifier on
the network. Each join of a foreign key to the associated
primary key corresponds to a binary relation in class
algebra.

For example, suppose that the user wants to find all
images of Tom and his dog. One could locate Tom either
by using the query @People{firstname= “Tom”} to find
all people named Tom, or by following relations from his
school, friends, or other objects to locate Tom. Then his
pet dog(s) can be found by following the “hasPet” rela-
tion and limiting the answer to dogs. The intersection of
the images containing Tom and the images containing his
dog will be the images containing both Tom and his dog,
as given by the query “query1@= @People{firstname=
“Tom”}; query2@=query1.inImages @* (query1.hasPet
@* @Dog) . inImages”, where “inImages” is the relation
from objects to the images that contain them and @* is the
class intersection operator. These class algebra queries
can be translated into SQL or XQuery, depending on
where the data are stored. An interactive environment
allows the user to search the IS-A hierarchy for a particu-
lar class, and then recursively constrain some of the
attribute or relation ranges. The user can then combine
various subqueries with Boolean operations, as given
previously. The major advantage of class algebra queries
is that the range is known. For example, query1 is People
and query2 is Images. Therefore, all subclasses and their
attributes and relations can be displayed when creating

further queries. Moreover, a query may make use of the
containment algorithm to optimize (Beneventano,
Bergamaschi & Sartori, 2003) the processing of the query.

There are many details of the definition of class alge-
bra that may be incompatible with various programming
language typing constraints. For instance, in order to
satisfy the laws of Boolean algebra, class algebra permits
multiple inheritance, unlike Java and C#. Class algebra has
tried to follow the Ontology Web Language, OWL, as
much as possible. For example, attributes, relations, and
methods are defined relative to an ontology name space
rather than relative to a class. An object (or class) is
permitted to be equivalent to other objects (or classes)
that have different object (class) identifiers. For instance,
anything known about “007” can be added to anything
known about “James Bond,” since they are names of the
same concept (i.e., class). This facilitates sharing of
equivalent objects and class definitions among organiza-
tions. The normalization process will replace such object
(class) identifiers by a unique representative, and at-
tribute and relation values will be merged together for this
canonical oid (cid).

In relational algebra, the result of any operation is a
relation. In class algebra, the result of any operation is a
class. A class’s “extent” is a DBTable, which is a collec-
tion of DBObjects. These are different from transient
programming language objects, which can only be made
persistent by serializing them as the value of an attribute
of a DBObject. DBTables can have listeners that are
guaranteed to hear updates to their contained DBObjects.
The calls to get/set/add/remove DBObjects are implicitly
queued as necessary to preserve ACID (atomicity, con-
sistency, isolation, durability) properties of transactions.

A DBTable has methods for sorting, grouping, histo-
grams, and report generation. It also has a “select” opera-
tion, which can choose a subset of objects that satisfy a
given class algebra constraint, represented as a string
(unlike J2EE “find” methods, which must be compiled).
The constraint is first normalized to a “simplest” form. The
simplest form is guaranteed to be computable in O(n3) time
since it involves a simple sort of a transitive closure of
Horn clauses that contain no explicit variables. A Prolog
definition of the normalization process is available at
http://www.cs.ccu.edu.tw/~dan/fuzzyProlog.txt.

As well as using the normalization procedure to opti-
mize queries, the class “intents” (i.e., normalized con-
straints) are used to organize the definitions of classes
into the class hierarchy. That is, the normalized class
definitions are used to recognize when one class is a
superclass of (i.e., contains) another, or when two class
definitions are equivalent or have empty intersections.



 

 

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/organizing-multimedia-objects-using-class/14592

Related Content

Telemedicine and Business Process Redesign at the Department of Defense
James A. Rodgersand Parag C. Pendharkar (2001). Annals of Cases on Information Technology:

Applications and Management in Organizations  (pp. 270-291).

www.irma-international.org/article/telemedicine-business-process-redesign-department/44621

Access Control and Information Flow Control for Web Services Security
Saadia Kedjar, Abdelkamel Tariand Peter Bertok (2020). Information Diffusion Management and

Knowledge Sharing: Breakthroughs in Research and Practice  (pp. 185-219).

www.irma-international.org/chapter/access-control-and-information-flow-control-for-web-services-security/242132

Critical Behavioral Competencies for IT Project Managers: What Are They? How Are They

Learned?
Hazel Taylorand Jill Palzkill Woelfer (2010). International Journal of Information Technology Project

Management (pp. 1-19).

www.irma-international.org/article/critical-behavioral-competencies-project-managers/47183

Involve Users or Fail: An IT Project Case Study from East Africa
Chris Procteand Molly Businge (2013). International Journal of Information Technology Project

Management (pp. 51-65).

www.irma-international.org/article/involve-users-or-fail/102480

Structural Text Mining
Vladimir A. Kulyukinand John A. Nicholson (2005). Encyclopedia of Information Science and Technology,

First Edition (pp. 2658-2661).

www.irma-international.org/chapter/structural-text-mining/14671

http://www.igi-global.com/chapter/organizing-multimedia-objects-using-class/14592
http://www.irma-international.org/article/telemedicine-business-process-redesign-department/44621
http://www.irma-international.org/chapter/access-control-and-information-flow-control-for-web-services-security/242132
http://www.irma-international.org/article/critical-behavioral-competencies-project-managers/47183
http://www.irma-international.org/article/involve-users-or-fail/102480
http://www.irma-international.org/chapter/structural-text-mining/14671

