
2330

#�� �	��$2��������	���*�
�	��!	����������
-��

Cristóbal Pareja-Flores
Universidad Complutense de Madrid, Spain

J. Ángel Velázquez-Iturbide
Universidad Rey Juan Carlos, Spain

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Programming is a central activity in the computing profes-
sion. It is facilitated by different tools (editors, compilers,
debuggers, etc), which are often integrated into program-
ming environments. Programming also plays a central role
in computer science education. For this purpose, a num-
ber of complementary tools were developed during the
last decade: algorithm animators, program visualizers,
problem generators, assignment graders, and so forth.

After the Web explosion, teachers of programming
rapidly turned their attention to the Web. Although the
Web has speed and power limitations, it also has several
advantages that make it invaluable for educational pur-
poses. Mainly, it provides universal accessibility and
platform independence, and solves the distribution prob-
lem by always making available the last version of any
tool.

This article describes Web-based tools for program
execution and visualization (Pareja-Flores & Velázquez-
Iturbide, 2002) in two sections. Each section gives a brief
overview of their evolution, describes educational uses,
and, in the case of visualization, includes some definitions
and reports of lessons learned. Finally, we outline our
view of future trends in the use of the Web for program-
ming education and our personal conclusions.

BACKGROUND

The simplest use of the Web for programming education
is as a public repository of high quality problems. Many
collections have no structure or, at best, are lineally or
hierarchically structured. We note several initiatives
hosted by the ACM: the Lab Repository (Knox, 2002),
Computer Science Education Links (McCauley, 2001),
and the ACM International Collegiate Programming
Contest (Skiena & Revilla, 2003). Other useful resources
are also collected on Web sites, such as slides and audio
lectures (Skiena & Revilla, 2003), algorithm animations
(Brummond, 2001; Crescenzi et al., 2003), or programming

tools (English, 2001). More advanced repositories pro-
vide a management system that, using (semi)structured
mark-up languages, allows retrieving, maintaining and
publishing. Good representatives are eXercita (Gregorio-
Rodríguez et al., 2001, 2002) and SAIL (Kovourov,
Tamassia, Bridgeman & Goodrich, 2000).

A more complex initiative consists in porting program-
ming tools to be executed on the Web. We focus on two
kinds of tools. The first kind is aimed at supporting
program execution. Programming is a task that involves
several activities: editing, compiling and testing, at least.
These activities require running a number of applications:
an editor, a compiler and the program itself. In addition to
their conventional use in standalone computers, they can
be used on the Web in a number of ways, increasing
flexibility from an educational point of view.

A second kind of tools supports software visualiza-
tion. This field studies the visual representation of soft-
ware entities (Stasko, Domingue, Brown, & Price, 1998).
Visualization requires an effort to abstract the target
entity to visualize and to make a good graphical design
that may yield many different representations: text vs.
graphics, level of abstraction, static vs. dynamic visual-
izations, one or multiple views, behavior vs. performance,
errors, and so forth. Algorithm animation is a subfield of
software visualization aimed at the dynamic visualization
a piece of software illustrating the main ideas or steps (i.e.,
its algorithmic behavior), but without a close relationship
to the source code. The graphical nature of software
visualization in general and algorithm animation in par-
ticular makes them very conducive to the hypermedia
features of the Web.

Web-Based Program Execution

The simplest use of the Web for programming execution
is as a medium to submit programs. A more advanced
capability is the support of Web-based program edition,
compilation and execution. This can be implemented in
different ways, depending on how the client/server load
is balanced. For instance, the system by Elenbogen,



  2331

Program Execution and Visualization on the Web

�
Maxim and McDonald (2000) includes a set of interactive
Web exercises on C++ delivered by Java applets. A
different option consists in using the Web as the medium
to transfer programs and data to the server, which is then
responsible for compiling and executing programs. In this
approach, programs may be edited by the client and then
remotely compiled and executed on a server (Hiltz &
Kögeler, 1997). The server may also work as a black-box
tester based on input-output pairs (Arnow & Barshay,
1999; Skiena & Revilla, 2003).

There are few systems with full programming capabili-
ties on the server side, including debugging. Ibrahim
(1994) developed a system that allowed the programmer to
use the Web as a front-end to edit a program, send it to the
Web server, and debug it by performing tracing actions on
the program running at the server. Finally, other systems
give support to the graphical visualization of execution
(Domingue & Mulholland, 1997) or allow the user to
experiment by controlling which parts must be executed
and how (Berghammer & Milanese, 2001).

Algorithm Animation

Algorithm animation is a research field which is now 20
years old and still evolving. There is a consensus with
respect to the videotape Sorting Out Sorting presented in
1981 by Baecker (1998) a landmark on animation, which
included animations of nine sorting algorithms. After-
wards, some works established the main techniques for
specifying and implementing algorithm animation: BALSA
(Brown, 1988), Tango (Stasko, 1990), and Pavane (Roman,
Cox, Wilcox & Plun, 1992). Systematic categorizations of
software visualizations have been proposed since then
(Price, Baecker & Small, 1998).

In the mid-nineties, many of the existing systems were
ported to the Web, and many additional systems were
specifically designed for the Web. A representative work
from these years is that of Naps (1996), in which he carried
out a study of the technical alternatives that could be used
to make animations produced by previous systems avail-
able on the Web. Other systems are JCAT (Brown &
Raisamo, 1997), Mocha (Baker, Cruz, Liotta & Tamassia,
1995), and JHAVÉ (Naps, Eagan & Norton, 2000). A
second group from these years is formed by the systems
that were not specifically designed for the Web, but based
on stand-alone multimedia and hypermedia. Although
they could not be used directly on the Web, they and
Web-based systems had similar hypermedia features. A
good example is the HalVis system (Hansen, Schrimpsher
& Narayanan, 1999).

Another category of systems automatically produce
program animations, enhanced with graphical representa-
tions. These can be considered as extensions of program-

ming environments with advanced animation capabilities
which are usable on the Web. Three examples are ISVL for
Prolog (Domingue & Mulholland, 1997), KIEL for ML
(Berghammer & Milanese, 2001), Jeliot for Java program-
ming (Haajanen et al. 1997) and WinHIPE for functional
programming (Naharro-Berrocal, Pareja-Flores, Velázquez-
Iturbide & Martínez-Santamarta, 2001).

EDUCATIONAL USES OF WEB-
BASED PROGRAM EXECUTION AND
VISUALIZATION

Program Execution

Currently, the most common use of the Web for program-
ming courses is as a communication medium, facilitating
submission and administration of assignments and grades
(Burd, 2000). As we have described previously, it may also
be used as a medium to retrieve exercises and to send, run
and even debug programs at the server.

Web-based program execution is also being used in
more specific ways within courses. First, if the Web
interface of the programming tool is carefully designed,
only one aspect can be considered at a time (the condition
of a conditional statement, the body of a loop, etc.),
allowing novice students to concentrate on program
fragments that illustrate certain syntactic or semantic
elements. This feature is especially important at the begin-
ning, when novices ignore program structure and other
details. Second, program execution on the Web can be
used as a testing tool. For instance, the teacher can use
the system for student inquiry by proposing that the
student predict the behavior expected for a given input,
or vice versa, by guessing the input that yields a desired
output (Elenbogen et al., 2000). Finally, by using the Web
to drive visualizations and animations (as explained in the
next section), information can be given graphically to the
programmer about errors, about the progress of the com-
putation, and so on.

Algorithm Animation

From the outset, the main use of algorithm animation was
educational, rather that industrial (for instance, as a
debugging tool). Algorithm animation systems have been
used in several ways: as a complement to lectures on
algorithms, for self-study, or within laboratories. A more
demanding use of animation systems consists in requir-
ing students to build their own animations.

The best documented experience ran for about 20
years at the Computer Science Department of Brown
University (Bazik, Tamassia, Reiss & van Dam, 1998). All



 

 

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/program-execution-visualization-web/14608

Related Content

ICT Exacerbates the Human Side of the Digital Divide
Elspeth McKay (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 1794-

1798).

www.irma-international.org/chapter/ict-exacerbates-human-side-digital/13820

GENESIS XXI: An Information Technologies Quixote in the Land of Windmills
Carlota Lorenzo, Miguel A. Gómez-Borjaand Aurora Lorenzo (2008). Journal of Cases on Information

Technology (pp. 60-82).

www.irma-international.org/article/genesis-xxi-information-technologies-quixote/3223

Alignment Conservativity Under the Ontology Change
Yahia Atig, Ahmed Zahaf, Djelloul Bouchihaand Mimoun Malki (2022). Journal of Information Technology

Research (pp. 1-19).

www.irma-international.org/article/alignment-conservativity-under-the-ontology-change/299923

Road Safety 2.0: A Case of Transforming Government’s Approach to Road Safety by Engaging

Citizens through Web 2.0
Dieter Fink (2011). Journal of Cases on Information Technology (pp. 21-38).

www.irma-international.org/article/road-safety-case-transforming-government/56307

Information Systems Development and Business Fit in Dynamic Environments
Panagiotis Kanellis, Drakoulis Martakosand Peggy Papadopoulou (2003). Annals of Cases on Information

Technology: Volume 5  (pp. 250-261).

www.irma-international.org/article/information-systems-development-business-fit/44545

http://www.igi-global.com/chapter/program-execution-visualization-web/14608
http://www.irma-international.org/chapter/ict-exacerbates-human-side-digital/13820
http://www.irma-international.org/article/genesis-xxi-information-technologies-quixote/3223
http://www.irma-international.org/article/alignment-conservativity-under-the-ontology-change/299923
http://www.irma-international.org/article/road-safety-case-transforming-government/56307
http://www.irma-international.org/article/information-systems-development-business-fit/44545

