
 2425

�
���
�����)���	����������	����

Laura Felice
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Daniel Riesco
Universidad Nacional de San Luis, Argentina

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

During the Rigorous Approach to Industrial Software
Engineering (RAISE) specification development process,
a variety of components and infrastructures are built. All
of these components are not independent, but related to
one another, especially when we specify different sys-
tems into the same infrastructure. The RAISE method
(Bjorner, 2000) is based on the idea that software devel-
opment is a stepwise, evolutionary process of applying
semantics-preserving transitions. Thus, the reuse pro-
cess is crucial in all of the stages of the development, but
there is no explicit reference to the specification reusabil-
ity in this development process.

Software components are typically very rich in infor-
mation, making the task of characterizing them and captur-
ing their relevant properties difficult. However, this is not
the only reason that makes software reuse difficult. Krueger
(1992) provides a brief general survey and very clear view
of different approaches for software reuse.

Information retrieval methods based on analyses of
natural-language documentation have been proposed to
construct software libraries (Helm & Maarek, 1991; Maarek,
Berry & Kaiser, 1991). Software components represented
by natural language can make the retrieval process a task
with ambiguity, incompleteness and inconsistency. Us-
ing a rigorous method to the retrieval of a component can
minimize all of these problems.

Based on these observations, we introduce a Reus-
able Component (RC) model for the definition of the
reusable component structure into RAISE. Related to this
method, it is important to emphasize the work of Beltaifa
and Moore (2001). They propose an infrastructure to
support reuse improving the efficiency of reusing soft-
ware components.

RC model integrates RAISE Specification Language
(RSL) specifications (George et al., 1992) and object-
oriented code. RC model describes object-oriented classes
at different levels of abstraction:

• Specialization: hierarchies of RSL implicit specifica-
tions related by formal specialization relationship.

• Realization: hierarchies of RSL complete algebraic
specifications related by realization relationship.

• Code: hierarchies of imperative RSL schemes re-
lated by implementation relationship and linked to
object-oriented code.

Also, a rigorous process for reusability of RC compo-
nents is defined. Its manipulation, by means of specifica-
tion building operators (Rename, Extend, Combine and
Hide), is the basis for the reusability.

Our approach allows that the properties of compo-
nents formally specified can be characterized by giving a
functional (RSL specification) description. Therefore, they
may be useful to someone searching for a particular
component.

Different possible classes of existing RC components
may be retrieved using a formal reasoning technique: an
exact match to the query specification, a component more
general than the query, or a component more specific than
the query.

BACKGROUND

Different approaches to specify reusable components
functionalities have been proposed. The way in which the
components can be used with others can play a critical
role in the reuse implementation.

Related with the RAISE method, we emphasize the
work of Beltaifa. They propose an infrastructure to sup-
port reuse which improve both the ease and efficiency of
reusing software components. The main difference with
our work is the integrated process defined for all stages
of the development method.

As a typical related work, we can mention Hennicker
and Wirsing (1992) who present a model for reusable
component definition. A reusable component is defined
as an unordered tree of specifications where any two
consecutive nodes are related by the implementation
relation and the leaves are different implementations of
the root. The work of Chen and Cheng (1997) is another
approach that provides a formalism to register compo-

2426

Reuse of Formal Specifications

nents properties to reuse them based on the architecture
and integration of the system. They are related to LOTOS
tools to facilitate the retrieval of the reusable component.

On the other hand, the work of Zaremski and Wing
(1997) is related to the specification matching. It is very
important to emphasize this proposal has been referenced
by a lot of authors.

There are two main activities in the RAISE method:
writing an initial specification, and developing it towards
something that can be implemented in a programming
language (George, 2002). Writing the initial specification
is the most critical task in software development. If it is
wrong, that is, if it fails to meet the requirements, the
following work will be largely wasted. It is well known that
mistakes made in the life-cycle are considerably more
expensive to fix than those made later.

What kinds of errors are made at the beginning? The
main problem is that we may not understand the require-
ments. The requirements are written in a natural language,
and, as a result, likely to be ambiguous. The aim of the
initial specification is to capture the requirements in a
formal and precise way.

MAIN THRUST OF RAISE AND
REUSE

The aim of the project RAISE was to develop a language,
techniques and tools that would enable industrial usage
of “formal methods” in the construction of software
systems. The results of this project include the RSL
language, which allows us to write formal specifications;
a method to carry out developments based on such
specifications, and a set of tools to assist in edition,
checking, transforming and reasoning about specifica-
tions.

RSL is a “wide spectrum” language that can be applied
at different levels of abstraction as well as stages of
development. It includes several definition styles such as
model-based or property-based, applicative or impera-
tive, sequential or concurrent.

A development in RAISE begins with an abstract
specification and gradually evolves to concrete imple-
mentations. The first specification is usually an abstract
applicative one, for example, functional or algebraic. A
first algebraic specification should have:

• A hierarchy of modules whose root is the system
module;

• A module containing types and attributes for the
non-dynamic identified entities; and

• The signatures of the necessary functions associ-
ated with types. These functions should be catego-
rized as generators (if the associated type or a type

dependent on it appears in their result types) and as
observers. Besides, preconditions should be for-
mulated for partial functions. These preconditions
are expressed by means of functions called “guards”.

The specification may contain invariants expressed as
functions.

RC Model Description

RC describes object classes at three different conceptual
levels: specialization, realization and code. These names
refer to the relations used to integrate specifications in the
three levels. A more detailed description can be found in
Felice, Leonardi, Favre, and Mauco (2001).

RC Components

The specialization level describes a hierarchy of incom-
plete RSL specifications as an acyclic graph. The nodes
are related by the specialization relationship. In this
context, it must be verified that if P(x) is a property
provable about objects x of type T, then P(y) must be
verified for every object y of type S, where S is a special-
ization of T.

Specialization level reconciles the need for precision
and completeness in abstract specifications with the
desire to avoid over-specification.

Every leaf in the specialization level is associated with
a sub-component at the realization level. A realization
sub-component is a tree of complete specifications in
RSL:

• The root is the most abstract definition.
• The internal nodes correspond to different realiza-

tions of the root.
• Leaves correspond to sub-components at the imple-

mentation level.

If E1 and E2 are specifications E1 can be realized by E2
if E1 and E2 have the same signature and every model of
E2 is a model of E1 (Hennicker & Wirsing, 1992).

Adaptation of reusable components, which consumes
a large portion of software cost, is penalized by over-
dependency of components on the physical structure of
data.

The realization level allows us to distinguish deci-
sions linked with the choice of data structure. In RAISE,
there are four main specification style options. They are
applicative sequential, imperative sequential, applicative
concurrent and imperative concurrent (George,
Haxthausen, Hughes, Milne, Prehn, & Pedersen, 1995).
Associated with them, there are two styles: abstract and
concrete. Imperative and concrete styles use variables,

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/reuse-formal-specifications/14626

Related Content

Quality of Online Learning Applications: Impact on Student Enjoyment, Motivation, and Anxiety
Leping Liu (2008). Information Communication Technologies: Concepts, Methodologies, Tools, and

Applications (pp. 2154-2167).

www.irma-international.org/chapter/quality-online-learning-applications/22807

Seaboard Stock Exchange's Emerging E-Commerce Initiative
Linda V. Knight, Theresa A. Steinbachand Diane M. Graf (2002). Annals of Cases on Information

Technology: Volume 4 (pp. 376-389).

www.irma-international.org/article/seaboard-stock-exchange-emerging-commerce/44519

A Helicopter Path Planning Method Based on AIXM Dataset
Lai Xin, Liang Chang Sheng, Jiayu Fengand Hengyan Zhang (2024). Journal of Cases on Information

Technology (pp. 1-17).

www.irma-international.org/article/a-helicopter-path-planning-method-based-on-aixm-dataset/333469

The Institutionalization of IT Budgeting in Firms: Investigating Sources of Influence
Qing Huand Jing Quan (2008). Innovative Technologies for Information Resources Management (pp. 274-

288).

www.irma-international.org/chapter/institutionalization-budgeting-firms/23858

Automation of American Criminal Justice
J. William Holland (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 197-

199).

www.irma-international.org/chapter/automation-american-criminal-justice/14236

http://www.igi-global.com/chapter/reuse-formal-specifications/14626
http://www.irma-international.org/chapter/quality-online-learning-applications/22807
http://www.irma-international.org/article/seaboard-stock-exchange-emerging-commerce/44519
http://www.irma-international.org/article/a-helicopter-path-planning-method-based-on-aixm-dataset/333469
http://www.irma-international.org/chapter/institutionalization-budgeting-firms/23858
http://www.irma-international.org/chapter/automation-american-criminal-justice/14236

