
 2921

�
0�������	������$�������

Peter Fettke
Johannes Gutenberg-University Mainz, Germany

INTRODUCTION

Mature engineering disciplines are generally character-
ized by accepted methodical standards for describing all
relevant artifacts of their subject matter. Such standards
not only enable practitioners to collaborate, but they also
contribute to the development of the whole discipline. In
1994, Grady Booch, Jim Rumbaugh, and Ivar Jacobson
joined together to unify the plethora of existing object-
oriented systems engineering approaches at semantic
and notation level (Booch, 2002; Fowler, 2004; Rumbaugh,
Jacobson, & Booch, 1998). Their effort led to the Unified
Modeling Language (UML), a well-known, general-pur-
pose, tool-supported, process-independent, and indus-
try-standardized modeling language for visualizing, de-
scribing, specifying, and documenting systems artifacts.
Table 1 depicts the origin and descent of UML.

UML is applicable to software and non-software do-
mains, including software architecture (Medvidovic,
Rosenblum, Redmiles, & Robbins, 2002), real-time and
embedded systems (Douglass, 1998), business applica-
tions (Eriksson & Penker, 2000), manufacturing systems
(Bruccoleri, Dieaga, & Perrone, 2003), electronic com-
merce systems (Saleh, 2002), data warehousing (Dolk,
2000), bioinformatics (Bornberg-Bauer & Paton, 2002) and
others. The language uses multiple views to specify
system’s structure and behavior. The recent version
UML 1.5 supports nine different diagram types. Table 2
and Figure 1 overview the main concepts of each diagram,
a more detailed description is given below. For a full
description of all semantics see Fowler (2004), OMG
(2003a) and Rumbaugh et al. (1998).

The specification of the UML is publicly available and
maintained by the Object Management Group (OMG).
OMG’s standardization process is formalized and con-
sists of several proposal, revision, and final implementa-
tion activities (Kobryn, 1999, p. 31f.). Modeling tools
supporting the development of UML diagrams are avail-
able from a number of commercial vendors and the open
source community (OMG, 2004; Robbins & Redmiles,
2000).

BACKGROUND

There is a great deal of terminological confusion in the
modeling literature. A modeling language or grammar

provides a set of constructs and rules that specify how to
combine the constructs to model a system (Wand &
Weber, 2002, p. 364). It can be distinguished between an
abstract syntax and a concrete syntax or notation of a
language. While the abstract syntax specifies conceptual
relationships between the constructs of the language, the
concrete notation defines symbols representing the ab-
stract constructs. In contrast, a modeling method pro-
vides procedures by which a language can be used. A
consistent and suited set of modeling methods is called
a methodology. A model is a description of a domain using
a particular modeling language.

The UML specification provides an abstract syntax
and a concrete notation for all UML diagrams as well as
an informal description of the constructs’ semantics. The
UML’s language specification is independent of but
strongly related to other OMG standards such as Common
Data Warehouse Model, XML Metadata Interchange or
Meta Object Facility. A modeling method or a modeling
methodology is not defined by the UML standard. Hence,
the language is process-neutral and can be used with
different software development processes.

Conceptual modeling has a long history. Other mod-
eling approaches that are to a certain degree accepted in
practice, for instance the Entity-Relationship Model or
flow charts, have a much more limited scope than UML.
These approaches address just some aspects of systems’
specification, namely data and process view. In contrast,
UML supports the specification of static as well as dy-
namic aspects. Other approaches with a similar scope, for
example, Open Modeling Language (Firesmith,
Henderson-Sellers, & Graham, 1998), are not widely ac-
cepted in practice.

STRUCTURAL DIAGRAMS

Structural or static diagrams describe the objects of a
system in terms of classes, attributes, operations, rela-
tionships, and interfaces.

(1) Class diagram. A class diagram can be viewed as a
graph of several elements connected by static rela-
tionships. The main element is a class. Classes
represent concepts within the system being mod-
eled and are descriptors for a set of objects with
similar structure, behavior, and relationships. An

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

2922

Unified Modeling Language

Table 1. History of UML (Fowler, 2004, pp. 151-159; Kobryn, 1999, p. 30)

Table 2. UML diagram types

Version Year Comments
0.8 1995 Origin of UML, so-called “Unified Method”
0.9 1996 Refined proposal
1.0 1997 Initial submission to OMG
1.1 1997 Final submission to OMG
1.2 1998 Editorial revision with no significant technical changes
1.3 1999 New use case relationships, revised activity diagram semantics
1.4 2001 Minor revisions, addition of profiles
1.5 2003 Adding action semantics
2.0 2004 (?) Planned major revision, deep changes to meta-model, new diagram types

Focus Diagram Purpose Main Concepts
Class Object structure Class, features, relationships
Object Example configuration of

instances
Object, link

Use case User interaction with system Use case, actor
Sequence Interaction between objects

emphasizing sequences
Interaction, message

Collaboration Interaction between objects
emphasizing collaborations

Collaboration, interaction,
message

Statechart Change of events during
object’s lifetime

State, transition, event, action

Activity Procedural and parallel behavior State, activity, completion,
transition, fork, join

Component Structure and connections of
components

Component, interface,
dependency

Deployment Deployment of components to
nodes

Node, component, dependency

Static diagrams

Dynamic
diagrams

Implementation
diagrams

object represents a particular instance of a class.
Each class has a unique name among other classes
within a specific scope (usually a UML package). A
class can hold several attributes and operations.
Attributes have names and belong to particular
types that can be simple data types such as integer,
string, and Boolean, as well as complex types (e.g.,
other classes). Operations are services offered by
an instance of the class and may be requested by
other objects during run-time. Different relation-
ships between classes can be defined.

Figure 2 depicts a class diagram for banking systems.
An account is described by the attributes “number” and
“balance.” The operations “deposit,” “withdrawal,” and
“freeze” are offered by an account. Each account is kept
by a “branch” and is assigned to a “holder.” The classes
“deposit account” and “current account” reuse the struc-
ture and behavior of the class “account” (inheritance
relationship). In addition, the specialized account classes

define further feature; for example, an object of the class
“current account” is described by the property “overdraft
facility” and offers an operation calculating the current
debit balance.

 (2) Object diagram. An object diagram is an instance of
a class diagram and depicts the state of the system
at a point in time (e.g., a particular configuration of
several objects). It contains objects including their
actual values of attributes and links describing
object references.

BEHAVIORAL DIAGRAMS

Behavioral diagrams describe the dynamics between ob-
jects of a system in terms of interactions, collaborations,
and state histories.

6 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/unified-modeling-language/14719

Related Content

Trends in Information Centers
R. Kelly Rainer Jr., Houston H. Carrand Simha R. Magal (1992). Information Resources Management

Journal (pp. 5-15).

www.irma-international.org/article/trends-information-centers/50963

Making Sense of IS Failures
Darren Dalcher (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 2476-

2483).

www.irma-international.org/chapter/making-sense-failures/13932

Neural Networks for Retail Sales Forecasting
G. Peter Zhang (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 2806-

2810).

www.irma-international.org/chapter/neural-networks-retail-sales-forecasting/13986

An Exhaustive Requirement Analysis Approach to Estimate Risk Using Requirement Defect and

Execution Flow Dependency for Software Development
Priyanka Chandaniand Chetna Gupta (2018). Journal of Information Technology Research (pp. 68-87).

www.irma-international.org/article/an-exhaustive-requirement-analysis-approach-to-estimate-risk-using-requirement-

defect-and-execution-flow-dependency-for-software-development/203009

Patterns in the Field of Software Engineering
Fuensanta Medina-Domínguez, Maria-Isabel Sanchez-Segura, Antonio de Amescuaand Arturo Mora-Soto

(2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 3032-3040).

www.irma-international.org/chapter/patterns-field-software-engineering/14022

http://www.igi-global.com/chapter/unified-modeling-language/14719
http://www.irma-international.org/article/trends-information-centers/50963
http://www.irma-international.org/chapter/making-sense-failures/13932
http://www.irma-international.org/chapter/neural-networks-retail-sales-forecasting/13986
http://www.irma-international.org/article/an-exhaustive-requirement-analysis-approach-to-estimate-risk-using-requirement-defect-and-execution-flow-dependency-for-software-development/203009
http://www.irma-international.org/article/an-exhaustive-requirement-analysis-approach-to-estimate-risk-using-requirement-defect-and-execution-flow-dependency-for-software-development/203009
http://www.irma-international.org/chapter/patterns-field-software-engineering/14022

