Chapter 11
 New Imaging and Computational Technology as a Guide for Catheter Ablation of Incessant Tachyarrhythmias

Carlo Pappone
University of Milan, Italy

Carmine Garzillo
University of Naples, Federico II, Italy

Vincenzo Santinelli
University of Milan, Italy
Simonetta Crisà
University of Milan, Italy

Abstract

Computational technology in the era of catheter ablation (RFA) has made it possible to experience relief from incessant atrial tachyarrhythmias (AT) by 3D electroanatomical mapping (EAM) systems. The Authors report the results of such technology in >500 consecutive patients (57% males, mean age 56.9 years) with incessant refractory post-ablation left AT (mean cycle length 256 ms). Patients underwent electroanatomical-mapping systems, which combine electrophysiological and spatial information allowing accurate reconstruction of the whole atria with real-time activation sequence guiding RFA for continuous transmural linear lesions. Color-coded voltage and/or activation maps were successfully performed in all patients. Mapping distinguished clearly and rapidly between micro-macro-reentrant ($>80 \%$) and focal mechanisms. Acute success was obtained without major complications, with repeated procedures in about 5% of patients. EAM technology allows determining both mechanism and location of arrhythmia, ensuring successful elimination of complex arrhythmogenic substrates.

INTRODUCTION

An Epochal Change in the Management of Complex Tachyarrhythmias: Background

In the last two decades the rapid expansion of indications for catheter ablation from common supraventricular tachycardias to very complex tachyarrhythmias including atrial fibrillation, incessant atrial tachycardia and ventricular tachycardia led electrophysiologists to face more prolonged procedure times
with excessive fluoroscopy exposure and, then the need for stable and reproducible catheter movement, all of which require a substantial improvement in the existing traditional 2 D mapping technology, and new developments (Silka, Gillette, et al., 1985; Van Hare, Velvis, \& Langberg, 1990; Kay, Chong, et al., 1993; Chen, Chiang, et al., 1994; Lesh, Van Hare, et al., 1994; Poty, 1996; Chen, Tai, et al., 1998; Haissaguerre, Jais, et al., 1998; Schilling, Peters, Davies, 1998; Gornick, Adler, et al., 1999; Jais, Shah, et al., 2000; Kottkamp, Hugl, et al., 2000; Willems, Weiss, et al., 2000; Saoudi, Cosío, et al., 2001). As a result, in the last years different electroanatomical mapping systems using different ablation catheters have been increasingly developed to definitively eliminate complex refractory tachyarrhythmias in many patients with or without structural heart diseases, (Nakagawa, Shah, et al., 2001; Dixit, \& Callans, 2002; Friedman, 2002; Friedman, Asirvatham, et al., 2002; Kirchhof, Loh, et al., 2002; de Groot, Schalij, et al., 2003; Kopelman, Prater, et al., 2003; Macle, Jais, et al., 2003; Marrouche, Martin, et al., 2003; Oral, Scharf, et al., 2003; Pappone, Rosanio, et al., 2003; Schenider, Ndrepepa, et al., 2003; Pappone, Manguso, et al., 2004; Pappone, Santinelli, et al., 2004; Sporton, Earley, 2004; Ventura, Rostock, et al., 2004; Corrado, Basso, et al., 2005; Gurevitz, Glikson, et al., 2005; Packer, 2005; Rotter, Takahashi, et al., 2005; Earley, Showkathali, et al., 2006; Estner, Deisenhofer, et al., 2006; Kistler, Rajappan, et al., 2006; Oral, Pappone, et al., 2006; Pappone, Augello, et al., 2006; Pappone, \& Santinelli, 2006; RobertsThomson, Kistler, et al., 2006; Chae, Oral, et al., 2007; Jais, Matsuo, et al., 2009; Martinek, Nesser, et al., 2007; Matsuo, Lim, et al., 2007; Medi, Kalman, et al., 2009; Del Carpio Munoz, Buescher, et al., 2010; Wilber, Pappone, et al., 2010; Khaykin, Oosthuizen, et al., 2011; Barbhaiya, Kumar, et al., 2014; Kang, Etheridge et al., 2014; Kapa, \& Asirvatham, 2014; Sun, \& Piccini, 2014 Anter, Tschabrunn, \& Josephson, 2015; Buch, \& Shivkumar, 2015; Ceresnak, Nappo, \& Janson, 2015; Scherr, Derval, et al., 2015; N Wang, Ouyang, et al., 2015; Winterfield, Jensen, et al., 2015; Zipes, Calkins, et al., 2015). Since 1990s catheter ablation has been commonly used to treat supraventricular tachyarrhythmias with a success rate of over 90 percent, a low risk of complications while the patient can resume the normal activities in a few days (Silka, Gillette, et al., 1985; Van Hare, Velvis, Langberg, 1990; Kay, Chong, et al., 1993; Kopelman, Prater, et al., 2003; Chen, Chiang, et al., 1994; Lesh, Van Hare, et al., 1994; Poty, 1996; Kopelman, Prater, et al., 2003). It causes little or no discomfort and is done under mild sedation with local anesthesia. In structural heart diseases, catheter ablation is usually performed for drug inefficacy or intolerance or as adjunctive therapy in patients with an implantable cardioverter-defibrillator, who are experiencing frequent DC schock discharges. Consensus groups from the European Society of Cardiology and the North American Society of Pacing and Electrophysiology have defined regular atrial tachycardia (AT) as either focal or macro-reentrant, classified according to electrophysiological mechanisms and anatomical structures (Saoudi, Cosío, et al., 2001). Focal ATs are characterised by a focal origin with subsequent centrifugal spread, with a mech- anism based in abnormal automaticity, triggered activity or micro re-entry (Chen, Tai, et al., 1998; Roberts-Thomson, Kistler, et al., 2006). Macro-reentrant ATs, by contrast, involve a larger re-entry circuit, conventionally defined by a diameter in excess of 2 cm . The most common form of macro-reentrant AT involves the cavo-tricuspid isth-mus (CTI) as a critical region and has traditionally been referred to as 'typical atrial flutter'. Since this classifi- cation, a third category of atrial tachycardia has been defined. This is termed small circuit re-entry and is "some- where between micro and macro". These circuits most commonly occur after atrial fibrillation (AF) ablation pro- cedures involving extensive left atrial ablation. Radiofrequency catheter ablation was first described in pediatric patients in the early 1990s (van Hare, Velvis, \& Langberg, 1990). Since then, multiple advances in the technology and understanding of this procedure have allowed this technique to blossom into one of the

26 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-global.com/chapter/new-imaging-and-computational-technology-as-a-guide-for-catheter-ablation-of-incessant-tachyarrhythmias/149394

Related Content

A Contactless Fingerprint Verification Method using a Minutiae Matching Technique
Tahirou Djara, Marc Kokou Assogbaand Antoine Vianou (2016). International Journal of Computer Vision and Image Processing (pp. 12-27).
www.irma-international.org/article/a-contactless-fingerprint-verification-method-using-a-minutiae-matchingtechnique/170593

3D Interaction with Scientific Data Through Virtual Reality and Tangible Interfacing
Wen Qi, Russell M. Taylor, Christopher Healeyand Jean-Bernard Martens (2008). User Centered Design for Medical Visualization (pp. 136-173).
www.irma-international.org/chapter/interaction-scientific-data-through-virtual/30628

Screening of Radiological Images Suspected of Containing Lung Nodules
Raúl Pedro Aceñero Eixarch, Raúl Díaz-Usechi Laplazaand Rafael Berlanga Llavori (2022). International Journal of Computer Vision and Image Processing (pp. 1-12).
www.irma-international.org/article/screening-of-radiological-images-suspected-of-containing-lung-nodules/283968
Translated Trademarks Retrieval using Color Autocorrelogram for Extracted Textual Parts Ahmed Zeggariand Fella Hachouf (2018). International Journal of Computer Vision and Image Processing (pp. 59-67).
www.irma-international.org/article/translated-trademarks-retrieval-using-color-autocorrelogram-for-extracted-textualparts/208178

Effective Video Shot Boundary Detection and Keyframe Selection using Soft Computing Techniques
Rashmi B Sand Nagendraswamy H S (2018). International Journal of Computer Vision and Image
Processing (pp. 27-48).
www.irma-international.org/article/effective-video-shot-boundary-detection-and-keyframe-selection-using-soft-computingtechniques/208176

