Chapter 14 Sustainable Nanosystem Development for Mass Spectrometry: Applications in Proteomics and Glycomics

Laurentiu Popescu

West University of Timişoara, Romania & Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania

Adrian C. Robu

West University of Timişoara, Romania & Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC) Timişoara, Romania

Alina D. Zamfir

Research and Development National Institute for Electrochemistry and Condensed Matter (INCEMC)
Timişoara, Romania & Aurel Vlaicu University of Arad, Romania

ABSTRACT

Nowadays, considerable efforts are invested into development of sustainable nanosystems as front end technology for either Electrospray Ionization (ESI) or Matrix-Assisted Laser Desorption/Ionization (MALDI) mass spectrometry (MS). Since their first introduction in MS, nanofluidics demonstrated a high potential to discover novel biopolymer species. These systems confirmed the unique ability to offer structural elucidation of molecular species, which often represent valuable biomarkers of severe diseases. In view of these major advantages of nanofluidics-MS, this chapter reviews the strategies, which allowed a successful development of nanotechnology for MS and the applications in biological and clinical research. The first part will be dedicated to the principles and technical developments of advanced nanosystems for electrospray and MALDI MS. The second part will highlight the most important applications in clinical proteomics and glycomics. Finally, this chapter will emphasize that advanced nanosystems-MS has real perspectives to become a routine method for early diagnosis of severe pathologies.

DOI: 10.4018/978-1-5225-0492-4.ch014

INTRODUCTION


General Principles of Mass Spectrometry

Mass spectrometry (MS), one of the most sensitive and powerful analytical methods, is based on the determination of the molecular masses, being frequently called "the smallest scale in the world". Hence, the fundamental difference between mass spectrometry and the rest of spectral techniques is that MS does not involve electromagnetic radiation (de Hoffmann et al., 2007).

Although in the last years a tremendous number of MS configurations were conceived, produced and released on the market by specialized companies, the basic elements of all mass spectrometers are the same (Figure 1):

- 1. The ion source that produces the ionization of the analyte;
- 2. The mass analyzer, which separates the ions according to their mass-to-charge ratio (m/z) and
- 3. The ion detector, a device for measuring the current of the ionic beam.

Figure 1. Mass spectrometer – block diagram

32 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/sustainable-nanosystem-development-for-mass-spectrometry/162096

Related Content

Parametric Analysis of Different Grades of Steel Materials Used in Plastic Industries through Die Sinking EDM Process

Goutam Kumar Boseand Pritam Pain (2016). *International Journal of Materials Forming and Machining Processes (pp. 45-74).*

www.irma-international.org/article/parametric-analysis-of-different-grades-of-steel-materials-used-in-plastic-industries-through-die-sinking-edm-process/143657

Understanding the Context of Design for Social Innovations: A Methodological Case Study

Juan Carlos Ortiz Nicolásand Thomas Harrison (2018). *Handbook of Research on Ergonomics and Product Design (pp. 301-324).*

www.irma-international.org/chapter/understanding-the-context-of-design-for-social-innovations/202663

Towards ProGesture, a Tool Supporting Early Prototyping of 3D-Gesture Interaction

Birgit Bomsdorf, Rainer Blumand Daniel Künkel (2017). 3D Printing: Breakthroughs in Research and Practice (pp. 396-413).

www.irma-international.org/chapter/towards-progesture-a-tool-supporting-early-prototyping-of-3d-gesture-interaction/168232

Optimizing the Friction Stir Spot Welding Parameters to Attain Maximum Strength in Dissimilar Joints of Aluminum and Carbon Steel

Sundaram Manickamand Visvalingam Balasubramanian (2016). *International Journal of Materials Forming and Machining Processes (pp. 64-76).*

www.irma-international.org/article/optimizing-the-friction-stir-spot-welding-parameters-to-attain-maximum-strength-indissimilar-joints-of-aluminum-and-carbon-steel/159822

Study of Chip Morphology, Flank Wear on Different Machinability Conditions of Titanium Alloy (Ti-6Al-4V) Using Response Surface Methodology Approach

Kalipada Maityand Swastik Pradhan (2017). *International Journal of Materials Forming and Machining Processes (pp. 19-37).*

www.irma-international.org/article/study-of-chip-morphology-flank-wear-on-different-machinability-conditions-of-titanium-alloy-ti-6al-4v-using-response-surface-methodology-approach/176059