
1307

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 53

DOI: 10.4018/978-1-5225-1759-7.ch053

ABSTRACT

Requirement analysis is the very first and crucial step in the software development processes. On the
other hand, as previously addressed by other researchers, it is the Achilles’ heel of the whole process
since the requirements lie on the problem space, whereas other software artifacts are on the solution
space. Stating the requirements in a clear manner eases the following steps in the process as well as
reducing the number of potential errors. In this paper, techniques for the improvement of the requirements
expressed in the natural language are revisited. These techniques try to check the requirement quality
attributes via lexical and syntactic analysis methods sometimes with generic, and sometimes domain
and application specific knowledge bases.

INTRODUCTION

System/software requirement quality is one of the most important drivers for the success of a final system/
software related product. But ironically, as stated by Kof (2005), in practice “requirements engineering
is the Achilles’ heel of the whole software development process”, because requirements documents are
usually inconsistent and incomplete. Cheng and Atlee (2007) identify the main reason for this as follows:
“… because requirements reside primarily in the problem space[;] whereas[,] other software artifacts
reside primarily in the solution space”.

A study showed that the user involvement is the most important factor for the success of the software
development projects (Standish Group, 1995). Moreover, even in the cases where the user involvement
is sufficient, the success is dependent on clear statement of the requirements, which appears as the third
most important factor on the list. In addition, other studies showed that the underlying reason for 60 to
85% of the software errors during a system’s life time is nothing but the requirement defects (Davis,
1990; Schach, 1992; Young, 2001). On the other hand, if such defects could not be fixed at the early

Natural Language Processing:
An Inevitable Step in

Requirements Engineering

A. Egemen Yilmaz
Ankara University, Turkey

1308

Natural Language Processing

phases of the projects, the cost of fixing the error would dramatically increases at each phase of the
development life cycle as seen in Table 1 (Young, 2001). Defects detected during requirement analysis
and design phases could reduce the rework effort between 40% and 50% (Boehm, 1981; Boehm & Basili,
2001; Gause & Weinberg, 1989).

All the above studies support that, effective customer interaction and defect-free requirement engi-
neering processes are the key factors for successful system/software development.

Pohl’s requirement engineering process model (Pohl, 1994), depicted in Figure 1, might be considered
as a reference for the improvement the software requirement quality. Pohl’s model suggests focusing on the
three dimensions seen in Figure 1. Stakeholders of the requirement engineering process should perform
a progress on the specification, representation and agreement dimensions. Hence, tools supporting prog-
ress in any of those three dimensions would increase the success rates of software development projects.

Table 1. Relative cost of fixing an error (Young, 2001)

Phase in which the Error is Found Relative Cost

Requirements Analysis 1

Design 3-6

Coding & Unit Test 10

Development Testing 15-40

Acceptance Testing 30-70

Operation 40-1000

Figure 1. Pohl’s requirement engineering model (Adapted from (Pohl, 1994))

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/natural-language-processing/173382

Related Content

Empowering Faculty Vitality and Mitigating Burnout Through Generative AI in Higher Education:

Reimagining Learning Environments With Generative AI
Stacy Ybarra (2024). Transforming Education With Generative AI: Prompt Engineering and Synthetic

Content Creation (pp. 281-308).

www.irma-international.org/chapter/empowering-faculty-vitality-and-mitigating-burnout-through-generative-ai-in-higher-

education/338542

Motorola’s Experiences in Designing the Internet of Things
Andreas Schallerand Katrin Mueller (2011). Ubiquitous Developments in Ambient Computing and

Intelligence: Human-Centered Applications (pp. 84-92).

www.irma-international.org/chapter/motorola-experiences-designing-internet-things/53327

A Process Data Warehouse for Tracing and Reuse of Engineering Design Processes
Sebastian C. Brandt, Marcus Schlüterand Matthias Jarke (2006). International Journal of Intelligent

Information Technologies (pp. 18-36).

www.irma-international.org/article/process-data-warehouse-tracing-reuse/2408

Designing Ambient Media: A Philosophical Viewpoint of Universal Design
Moyen Mohammad Mustaquim (2013). International Journal of Ambient Computing and Intelligence (pp.

19-33).

www.irma-international.org/article/designing-ambient-media/75568

A Review of Security Mechanisms for Multi-Agent Systems: Security Challenges in Multi-Agent

Systems
Antonio Muñoz (2019). Artificial Intelligence and Security Challenges in Emerging Networks (pp. 38-62).

www.irma-international.org/chapter/a-review-of-security-mechanisms-for-multi-agent-systems/220546

http://www.igi-global.com/chapter/natural-language-processing/173382
http://www.irma-international.org/chapter/empowering-faculty-vitality-and-mitigating-burnout-through-generative-ai-in-higher-education/338542
http://www.irma-international.org/chapter/empowering-faculty-vitality-and-mitigating-burnout-through-generative-ai-in-higher-education/338542
http://www.irma-international.org/chapter/motorola-experiences-designing-internet-things/53327
http://www.irma-international.org/article/process-data-warehouse-tracing-reuse/2408
http://www.irma-international.org/article/designing-ambient-media/75568
http://www.irma-international.org/chapter/a-review-of-security-mechanisms-for-multi-agent-systems/220546

