
353

EEnhancing Portal Design
Yuriy Taranovych
Technische Universität München, Germany

Michael Schermann
Technische Universität München, Germany

Andreas Schweiger
Technische Universität München, Germany

Helmut Krcmar
Technische Universität München, Germany

Copyright © 2007, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

IntroductIon

In recent years, portals became more and more popular
among organizations (Klaene, 2004). A portal provides
a solution for aggregating content and applications from
various information systems for presentation to the user
(Linwood & Minter, 2004). Generally, portals pose three main
architectural requirements (Linwood & Minter, 2004): as
portals integrate heterogeneous content from various sources,
a modularized architecture is necessary to allow maintainable
portal systems. Second, portals require separating various
concerns (Fowler, Rice, & Foemmel, 2002). For instance, the
portal’s user interface is supposed to display heterogeneous
content consistently on various devices, whereas the back-
end is supposed to syndicate content from various sources.
Third, a consistent management and coordination of different
information sources, portal elements, and other components
is necessary for good portals design.

Based on these three characteristics of portals we
investigate existing portal solutions (BEA WebLogic, IBM
Websphere, Liferay Portal, eXo Platform, and JBoss Portal)
to identify best practices in portal architectural design. In
software engineering best practices are usually captured
in patterns. The idea of using patterns for capturing best
practices has been transferred from the fields of architecture
and cognitive research to software engineering aiming at
enhancing software development (Gamma, Helm, Johnson, &
Vlissides, 1995) in terms of reusability or using established
solutions. Furthermore, we identify patterns that are not used
in the analyzed portals, but may significantly contribute to
good architectural design.

Based on our analysis, we construct a portal pattern
language to summarize existing best practices in portal
architecture. Using the portal pattern language assists portal
developers in evaluating specific design problems in the
context of related problems. Thus, portal design decisions

are made with an overall background of best practices in
portal development.

The article is structured as follows: first we give an
overview of patterns and their use in software development.
Next, we present architectural design patterns that are being
applied in portal development. Based on this, we construct
the core set of a portal pattern language to support design
decisions for portal architectures. The article closes with a
summary and outlook on future research

SoftwarE dESIgn PattErnS

The original idea of patterns rose from Alexander’s patterns
in architecture (Alexander, Ishikawa, & Silverstein, 1977).
Patterns describe a design problem and a general solution
to it in a particular context. In that way the general solution
can be adapted and thus reused in different settings. Hence
patterns can be seen as best practices or accepted and proven
solutions for recurring design problems. Patterns are captured
experience of engineers or experts in a particular field. The
software community adopted design patterns in the early
eighties (Gamma et al., 1995).

A pattern generally comprises the following elements.
The context comprises causes which lead to the specific

problem of the pattern as well as conditions under which
the problem generally occurs. Hence, the context supports
acquiring the relevance of a pattern. The problem section
generally describes identified contradictions in the context
of the pattern. Such aspects of pattern problems are usually
called forces. The solution section of a pattern explains a
proposal of how to solve the given problem by dissolving
mentioned forces. Furthermore an illustration of possible side
effects is given. The closing section of a pattern comprises
references to related patterns (Alexander et al., 1977).

354

Enhancing Portal Design

Software patterns are classified into three layers: archi-
tectural patterns, design patterns, and idioms (Coplien &
Schmidt, 1995). Architectural patterns provide the highest
level of abstraction in software patterns. They express fun-
damental structures and organization schemes for software
systems. Architectural patterns provide a set of predefined
subsystems, specify their relationships and include rules
and guidelines for organizing the relationships among them
(Shaw & Garlan, 1996). Design patterns suggest solutions by
providing a collection of class or subsystem and define the
relationship among them. Idioms describe how coding prob-
lems can be solved in particular programming languages.

We are focusing on supporting architectural design
of portals and thus we analyze architectural patterns and
develop the core of a pattern language in the remainder of
the article.

archItEcturaL PattErnS
for PortaL dEvELoPMEnt

The following sections describe architectural patterns which
are used or can be reasonably used for the development of
portals.

Layered architecture Pattern

Context/Problem

Traditionally, developers start developing software with
drawing a graphical user interface (GUI) and then writing
blocks of code that execute application actions in response
to user input (Yang, 2001). Many design methodologies start
with the construction of a GUI, which often consolidates
into a final system design. As a result, a program organized
around GUI elements and user actions on those elements,
with persistent data manipulation, application functionality,
and display code completely interwoven (Yang, 2001).

Solution

To solve the problem, an application has to be put into dif-
ferent layers. This approach is considered to be beneficial,
since it separates conceptually different issues. From an
architectural point of view, the system is partitioned into
a number of layers placed on top of one another. For ex-
ample, services of layer n+1 consist mostly of the services
provided by layer n or a combination of sublayers. There
are numerous benefits of a layered architecture, including
more freedom and increased flexibility. It leaves designers
more responsibilities (Yang, 2001).

Applicability to Portals

Using the layered architecture pattern for portal development
will allow fulfilling the separation of concerns requirement
by putting conceptually different parts of the application
into different layers. This pattern is recommended by for the
development with BEA WebLogic portal (2005).

Model/view/controller Pattern

Context/Problem

A mixture of code for data access and business logic
presentation in applications can lead to several problems.
Such applications are difficult to maintain because of
interdependencies between all of the components. High
coupling makes classes difficult or impossible to reuse,
because they depend on so many other classes. Adding new
data views often requires reimplementing or copying and
pasting business logic code, which then requires maintenance
in multiple places. Data access code suffers from the same
problem (Yacoub & Ammar, 2003).

Solution

A proven way of solving the problem described above is
to apply the model/view/controller (MVC) architectural
pattern. The MVC pattern is originally designed for user
interfaces in Smalltalk-80 (Krasner & Pope, 1988). The
pattern consists of three parts: model, view, and controller.
The model encapsulates the application logic and contains
the functional core of the application. View components
present information to the user. Different views present the
model’s information in a variety of ways. A view retrieves
the current data values to be displayed from the model and
put them on the screen. The controller describes how the
user interface changes according to the user’s input. The
model does not need to take care of different needs of views,
but simply notifies all registered views when the model is
updated. In return, the views consult the model in order to
get the relevant changes (Buschmann, Meunier, Rohnert,
Sommerlad, & Stal, 1996; Yacoub et al., 2003).

Applicability to Portals

MVC is widespread in portal development. It could be identi-
fied in all investigated portals. This fact is not surprising as
MVC makes its contribution to fulfilling all three architectural
portal requirements discussed above. It provides a basis for
modularization and separation of presentation (view) and
functionality (model) as well as for coordination of them
by means of a controller.

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/enhancing-portal-design/17895

Related Content

Bioinformatics Web Portals
Mario Cannataro (2007). Encyclopedia of Portal Technologies and Applications (pp. 82-88).

www.irma-international.org/chapter/bioinformatics-web-portals/17848

Dashboard Services for Pragmatics-Based Interoperability in Cloud and Ubiquitous Manufacturing
Luís Ferreira, Goran Putnik, Maria Manuela Cruz-Cunha, Zlata Putnik, Hélio Castro, Catia Alvesand Vaibhav

Shah (2014). International Journal of Web Portals (pp. 35-49).

www.irma-international.org/article/dashboard-services-for-pragmatics-based-interoperability-in-cloud-and-ubiquitous-

manufacturing/110886

Users' Interest Assessment on Job Portal
 Sudianaand Bens Pardamean (2014). International Journal of Web Portals (pp. 64-75).

www.irma-international.org/article/users-interest-assessment-on-job-portal/110888

SMEs and Portals
Ron Craig (2007). Encyclopedia of Portal Technologies and Applications (pp. 934-939).

www.irma-international.org/chapter/smes-portals/17989

A Reference Ontology Based Approach for Service Oriented Semantic Interoperability
Shuying Wang, Kevin P. Brown, Jinghui Luand Miriam Capretz (2011). International Journal of Web Portals

(pp. 1-16).

www.irma-international.org/article/reference-ontology-based-approach-service/53033

http://www.igi-global.com/chapter/enhancing-portal-design/17895
http://www.igi-global.com/chapter/enhancing-portal-design/17895
http://www.irma-international.org/chapter/bioinformatics-web-portals/17848
http://www.irma-international.org/article/dashboard-services-for-pragmatics-based-interoperability-in-cloud-and-ubiquitous-manufacturing/110886
http://www.irma-international.org/article/dashboard-services-for-pragmatics-based-interoperability-in-cloud-and-ubiquitous-manufacturing/110886
http://www.irma-international.org/article/users-interest-assessment-on-job-portal/110888
http://www.irma-international.org/chapter/smes-portals/17989
http://www.irma-international.org/article/reference-ontology-based-approach-service/53033

