Chapter 3.8 The Decision Making Process of Integrating Wireless Technology into Organizations

Assion Lawson-Body University of North Dakota, USA

Glenda Rotvold University of North Dakota, USA

Justin Rotvold Techwise Solutions, LLC, USA

INTRODUCTION

With the advancement of wireless technology and widespread use of mobile devices, many innovative mobile applications are emerging (Tarasewich & Warkentin, 2002; Varshney & Vetter, 2002; Zhang, 2003). Wireless technology refers to the hardware and software that allow transmission of information between devices without using physical connections (Zhang, 2003). Understanding the different technologies that are available, their limitations, and uses can benefit companies looking at this technology as a viable option to improve overall organizational effectiveness and efficiency.

A significant part of the growth in electronic business is likely to originate from the increasing numbers of mobile computing devices (Agrawal, Kaushal, & Ravi, 2003; Anderson & Schwager, 2004; Varshney & Vetter, 2000). Ciriello (as cited in Smith, Kulatilaka, & Venkatramen, 2002, p. 468) states that "Forecasts suggest that the number of worldwide mobile connections (voice and data) will grow from 727 million in 2001 to 1,765 million in 2005." With the huge growth anticipated in the utilization of wireless technologies, businesses are going to be increasingly faced with decisions on what wireless technologies to implement.

The objective of this article is to examine and discuss wireless technologies followed by presentation and discussion of a decision model that was formed to be used in determining the appropriate wireless technology. Technologies appropriate for both mobile and wide area coverage are discussed followed by technologies such as WLANs, which are used in more local, confined areas with short to medium range communication needs. This article is organized as follows. The first section contains the various generations of Wireless Technology; in the second, WLANs are examined. The following section describes a decision model. In the next section, technology concerns are discussed, and the final section presents the conclusion.

WIRELESS TECHNOLOGY: GENERATIONS

There has been an industry-wide understanding of different "generations" regarding mobile technology (Varshney & Jain, 2001). Currently, there are also several technologies within each classification of generations, but the technologies are not necessarily finite in these generations.

First Generation

First generation (1G) contains analog cellular systems and does not have the capability to provide data services. The only service is voice service that can be provided to mobile phones. Two technologies worth noting are advance mobile phone service (AMPS) and frequency division multiple access (FDMA). AMPS is a first generation analog cellular phone system standard that operates in the 800 Mhz band. AMPS uses FDMA (an access/multiplexing technology) which separates the spectrum into 30 kHz channels, each of which can carry a voice conversation or, with digital service, carry digital data. FDMA allows for multiple users to "access a group of radio frequency bands" and helps eliminate "interference of message traffic" (Dunne, 2002).

Second Generation

Second generation (2G) is a digital wireless telephone technology that uses circuit-switched services. This means that a person using a second generation-enabled device must dial in to

gain access to data communications. "Circuitswitched connections can be slow and unreliable compared with packet-switched networks, but for now circuit-switched networks are the primary method of Internet and network access for wireless users in the United States" (Dunne, 2002). In this generation one will find Global System for Mobile communications (GSM) which is a network standard, in addition to time division multiple access (TDMA) and code division multiple access (CDMA), which are multiplexing technologies. The 2G technology that is most widely used is GSM (a standard with the highest use in Europe) with a data rate of 9.6 kilobits per second (Tarasewich, Nickerson & Warkentin, 2002). TDMA works with GSM while CDMA does not, but CDMA is more widely used in the United States (Dunne, 2002).

TDMA allows many users to use the same radio frequency by breaking the data into fragments, which are each assigned a time slot (Dunne, 2002). Since each user of the channel takes turns transmitting and receiving, only one person is actually using the channel at any given moment and only uses it for short bursts. CDMA on the other hand, uses a special type of digital modulation called Spread Spectrum, which spreads the user's voice stream bits across a very wide channel and separates subscriber calls from one another by code instead of time (Agrawal et al., 2003). CDMA is used in the U.S. by carriers such as Sprint and Verizon (Dunne, 2002).

Two and One-Half Generation

There is a half generation that follows 2G. 2.5G exhibits likenesses of both 2G and 3G technologies. 2G wireless uses circuit switched connections while 3G uses high-speed packet switched transmission. Circuit-switching requires a dedicated, point to point physical circuit between two hosts where the bandwidth is reserved and the path is maintained for the entire session. Packet switching, however, divides digitized messages into

8 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/decision-making-process-integrating-wireless/18234

Related Content

Consumers' Cognitive Dimension of International Corporate Social Responsibility and Its Correlation With Purchasing Tendency

Na Qi, Yunfan Zhang, Xiao Linand Shengchen Chen (2023). *Journal of Organizational and End User Computing (pp. 1-17).*

www.irma-international.org/article/consumers-cognitive-dimension-of-international-corporate-social-responsibility-and-itscorrelation-with-purchasing-tendency/322768

Comparison of the Features of Some CoP Software

Elayne Coakes (2008). *End-User Computing: Concepts, Methodologies, Tools, and Applications (pp. 78-80).* www.irma-international.org/chapter/comparison-features-some-cop-software/18172

Designing Usable Speech Input for Virtual Environments

Alex Stedmon (2012). User Interface Design for Virtual Environments: Challenges and Advances (pp. 124-141).

www.irma-international.org/chapter/designing-usable-speech-input-virtual/62120

Revisiting How Perceived Uncertainty and Herd Behavior Influence Technology Choice

Ali Vedadiand Timothy H. Greer (2021). *Journal of Organizational and End User Computing (pp. 1-19).* www.irma-international.org/article/revisiting-how-perceived-uncertainty-and-herd-behavior-influence-technologychoice/276513

Caching Resource Sharing for Network Slicing in 5G Core Network: A Game Theoretic Approach

Qingmin Jia, RenChao Xie, Tao Huang, Jiang Liuand Yunjie Liu (2019). *Journal of Organizational and End User Computing (pp. 1-18).*

www.irma-international.org/article/caching-resource-sharing-for-network-slicing-in-5g-core-network/233827