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Big Data Analysis and Mining

INTRODUCTION

Advancements in the field of information science 
and technology enables users to collect or generate 
high volumes of valuable data of different levels of 
veracities —such as streams of banking, financial, 
and shopper market basket data—at high velocities 
from wide varieties of data source in various real-
life business, engineering, scientific applications 
in modern organizations and society. Embedded 
in these big data (Madden, 2012; Leung, 2015) 
is implicit, previously unknown, and potentially 
useful information and knowledge. However, these 
big data come with volumes beyond the ability of 
commonly-used software to capture, manage, and 
process within a tolerable elapsed time. Hence, 
new forms of information science and technol-
ogy—such as big data analysis and mining—are 
needed to process and analyze these big data so 
to as enable enhanced decision making, insight, 
knowledge discovery, and process optimization. 
Over the past few years, algorithms have been 
proposed for various big data analysis and mining 
tasks, including clustering (which groups similar 
data together), classification (which categorizes 
groups of similar data), outlier detection (which 
identifies anomalies), and frequent pattern min-
ing (which discovers interesting knowledge in the 
forms of frequently occurring sets of merchandise 
items or events). Most of these algorithms use the 
MapReduce model—which mines the search space 
with distributed or parallel computing (Shim, 
2012). Among different big data analysis and 
mining tasks, this chapter focuses on applying the 
MapReduce model to big data for the discovery 
of frequent patterns.

BACKGROUND

Since the introduction of the research problem of 
frequent pattern mining (Agrawal, Imieliński, & 
Swami, 1993), numerous algorithms have been 
proposed (Hipp, Güntzer, & Nakhaeizadeh, 2000; 
Ullman, 2000; Ceglar & Roddick, 2006). Notable 
ones include the classical Apriori algorithm 
(Agrawal & Srikant, 1994) and its variants such 
as the Partition algorithm (Savasere, Omiecinski, 
& Navathe, 1995). The Apriori algorithm uses a 
level-wise breadth-first bottom-up approach with 
a candidate generate-and-test paradigm to mine 
frequent patterns from transactional databases 
of precise data. The Partition algorithm divides 
the databases into several partitions and applies 
the Apriori algorithm to each partition to obtain 
patterns that are locally frequent in the partition. 
As being locally frequent is a necessary condition 
for a pattern to be globally frequent, these locally 
frequent patterns are tested to see if they are glob-
ally frequent in the databases. To avoid the can-
didate generate-and-test paradigm, the tree-based 
FP-growth algorithm (Han, Pei, & Yin, 2000) was 
proposed. It uses a depth-first pattern-growth (i.e., 
divide-and-conquer) approach to mine frequent 
patterns using a tree structure that captures the 
contents of the databases. Specifically, the algo-
rithm recursively extracts appropriate tree paths 
to form projected databases containing relevant 
transactions and to discover frequent patterns from 
these projected databases.

In various real-life business, engineering, 
scientific applications in modern organizations 
and society, the available data are not precise 
data but uncertain data (Tong et al., 2012; Leung, 
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Cuzzocrea, & Jiang, 2013; Leung, MacKinnon 
& Tanbeer, 2014; Jiang & Leung, 2015; Ahmed 
et al., 2016). Examples include sensor data and 
privacy-preserving data. Over the past few years, 
several algorithms have been proposed to mine 
and analyze these uncertain data. The tree-based 
UF-growth algorithm (Leung, Mateo, & Brajczuk, 
2008) is an example.

With high volumes of big data, it is not unusual 
for users to have some phenomenon in mind. For 
example, a store manager is interested in some 
promotional items. Hence, it would be more desir-
able if data mining algorithms return only those 
patterns containing the promotional items rather 
than returning all frequent patterns, out of which 
many may be uninteresting to the store manager. 
It leads to constrained mining, in which users can 
express their interests by specifying constraints and 
the mining algorithm can reduce the computational 
effort by focusing on mining those patterns that 
are interesting to the users.

Besides the aforementioned algorithms dis-
cover frequent patterns in serial, there are also 
parallel and distributed frequent pattern mining 
algorithms (Zaki, 1999). For example, the Count 
Distribution algorithm (Agrawal & Shafer, 1996) 
is a parallelization of the Apriori algorithm. It 
divides transactional databases of precise data and 
assigns them to parallel processors. Each proces-
sor counts the frequency of patterns assigned to 
it and exchanges this frequency information with 
other processors. This counting and informa-
tion exchange process is repeated for each pass/
database scan.

As we are moving into the new era of big data, 
more efficient mining algorithms are needed be-
cause these data are wide varieties of valuable data 
of different veracities with volumes beyond the 
ability of commonly-used algorithms for mining 
and analyzing within a tolerable elapsed time. To 
handle big data, researchers proposed the use of 
the MapReduce programming model.

BIG DATA ANALYSIS AND MINING 
FOR FREQUENT PATTERNS

The MapReduce Programming Model

MapReduce (Dean & Ghemawat, 2004; Dean & 
Ghemawat, 2010) is a high-level programming 
model for processing high volumes of data. 
It uses parallel and distributed computing on 
large clusters or grids of nodes (i.e., commodity 
machines), which consist of a master node and 
multiple worker nodes. As implied by its name, 
MapReduce involves two key functions:

1.  The “map” function, and
2.  The “reduce” function.

To solve a problem using MapReduce, the 
master node reads and divides input big data into 
several partitions (sub-problems), and then assigns 
them to different worker nodes. Each worker node 
executes the map function on each partition (sub-
problem). The map function takes a pair of 〈key, 
value〉 and returns a list of 〈key, value〉 pairs as 
an intermediate result:

• Map: 〈key1, value1〉 ↦ list of 〈key2, value2〉,

where:

1.  key1 & key2 are keys in the same or different 
domains, and

2.  value1 & value2 are the corresponding values 
in some domains.

The pairs in the list of 〈key, value〉 pairs for 
this intermediate result are then shuffled and 
sorted. Each worker node then executes the reduce 
function on:

1.  A single key from this intermediate result, 
and

2.  The list of all values that appear with this 
key in the intermediate result.
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