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Uniform Random Number Generation 
With Jumping Facilities

INTRODUCTION

As computer capacities and simulation technolo-
gies advance, simulation has become the method of 
choice for modeling and analysis. The fundamental 
advantage of simulation is that it can tolerate far 
less restrictive modeling assumptions, leading 
to an underlying model that is more reflective 
of reality and thus more valid, leading to better 
decisions (Lucas et al. 2015). Simulation studies 
are typically proceed by transforming in a more 
or less complicated way of a sequence of numbers 
between 0 and 1 produced by a pseudorandom 
generator into an observations of the measure of 
interest. A facility for generating sequences of 
pseudorandom numbers is a fundamental part 
of computer simulation systems. Furthermore, 
random number generators also play an impor-
tant role in cryptography. A collection of random 
variables x1, x2, …, xn is a random sample if they 
are independent and identically distributed. True 
random numbers cannot be produced by a deter-
ministic algorithm, and hence, random numbers 
generated by using a recursive equation are referred 
to as pseudorandom numbers. The deterministic 
nature of these techniques is important because 
it can be reproduced in computations. A facility 
for generating sequences of pseudorandom num-
bers is a fundamental part of computer simula-
tion systems. Usually, in practice, such a facility 
produces a deterministic sequence of values, but 
externally these values should appear to be drawn 
independently from a uniform distribution between 
0 and 1, i.e., they are independent and statistically 
indistinguishable from a truly random sequence. 
Furthermore, multiple independent streams of 

random numbers are often required in simulation 
studies, for instance, to facilitate synchronization 
for variance-reduction purposes, and for making 
independent replications.

A random number generator (RNG) is an al-
gorithm that starting from an initial seed (or seeds), 
produces a stream of numbers that behaves as if 
it were a random sample when analyzed using 
statistical tests. The RNG is closely related to the 
Deterministic Random Bit Generators (DRBGs). 
See L’Ecuyer (1990, 2013) and references there-
in for more information on RNGs. We describe a 
portable set of software utilities for uniform 
random-number generation. It provides for mul-
tiple generators (streams) running simultane-
ously, and each generator (stream) has its sequence 
of numbers partitioned into many long disjoint 
contiguous substreams, see L’Ecuyer et al. (2002). 
Simple procedure calls allow the user to make 
any generator “jump” ahead/back v  steps (random 
numbers). Implementation issues are discussed. 
The basic underlying generator CMRG (Combined 
Multiple Recursive Generator) combines two 
multiple recursive random number generators 
with a period length of approximately 2191 
(≈3.1×1057), good speed, and excellent theoreti-
cal properties, e.g., the lattice structure, see 
Kroese et al. (2011) for a list of desired properties.

BACKGROUND

There are a number of methods for generating the 
random numbers, of which the most popular are 
the congruential methods (mixed, multiplicative, 
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and additive). The (mixed) linear congruential 
generators (LCGs) are defined by
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where m (the modulus) is a positive integer (usually 
a very large primary number), a (the multiplier) 
∈{1,…,m–1} and c (the increment) is a nonnega-
tive integer. This mathematical notation signifies 
that xi is the remainder of (axi-1+c) divided by m. 
Hence, xi∈{1,…,m–1}. Thus, random variable ui 
is a uniform 0, 1 variable. Note that
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Hence, every xi is completely determined by 
m, a, c, and x0. The sequence xi repeats once it 
returns to a previously visited value. The period 
of a generator is the length of a generated steam 
before it begins to repeat. If u0=up (where p>0), 
then the length p is called the period. The longest 
possible period for a LCG is m, i.e., m represents 
the desired number of different values that could 
be generated for the random numbers. Hence, the 
modulus m is often taken as a large prime number 
close to the largest integer directly representable 
on the computer (i.e., equal or near 231–1 for 32- 
bit computers). If p=m, we say that the generator 
has full period. The required conditions on how 
to choose m, a, and c so that the corresponding 
LCG will have full period are known, see Knuth 
(1997) or Law (2014).

LCGs are sensitive with respect to the param-
eters, especially the value of a. When c>0, the 
LCGs are called mixed LCGs. When c=0,
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These LCGs are called multiplicative LCGs. 
Most existing implementations of LCGs are mul-
tiplicative LCGs, because in general the value of 
c does not have a large impact of the quality of 
an LCG. Note that if xi=0, then all subsequent xi 
are identically 0. Thus, the longest possible period 
for a multiplicative LCG is m–1. Furthermore,
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Most experts now recognize that small LCGs 
with moduli around 231 or so should no longer be 
used as general-purpose random-number genera-
tors. Not only can one exhaust the period in a few 
minutes on a PC (personal computer), but more 
importantly the poor structure of the points can 
dramatically bias simulation results for sample 
sizes much smaller than the period length.

One way of extending the basic LCG is to 
combine two or more LCGs through summation. 
Another way of extending the basic LCG is to use 
a higher-order recursion. A multiple recursive 
random number generator (MRG), which goes 
from integer to integer according to the recursion
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where i, k, and m are positive integers, and a1,…
,ak ∈{0,1,…,m–1} To increase the efficiency and 
ease the implementation, the MRG algorithm 
usually set all but two ai’s to 0. Furthermore, the 
nonzero ai should be small. However, L’Ecuyer 
(2013) points that these conditions are generally 
in conflict with those required for having a good 
lattice structure and statistical robustness. See Law 
(2014) on the lattice structure of pseudorandom 
numbers. The longest possible period for a MRG 
is mk–1 (L’Ecuyer, 1996). Other way of extending 
the basic LCG is the additive congruential RNG 
(ACRON). The ACRON sets a=1 and replace 
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