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INTRODUCTION

As computer capacities and simulation technolo-
gies advance, simulation has become the method of
choice formodeling and analysis. The fundamental
advantage of simulation is that it can tolerate far
less restrictive modeling assumptions, leading
to an underlying model that is more reflective
of reality and thus more valid, leading to better
decisions (Lucas et al. 2015). Simulation studies
are typically proceed by transforming in a more
or less complicated way of a sequence of numbers
between 0 and 1 produced by a pseudorandom
generator into an observations of the measure of
interest. A facility for generating sequences of
pseudorandom numbers is a fundamental part
of computer simulation systems. Furthermore,
random number generators also play an impor-
tant role in cryptography. A collection of random
variables x, x,, ..., x_is a random sample if they
are independent and identically distributed. True
random numbers cannot be produced by a deter-
ministic algorithm, and hence, random numbers
generated by using arecursive equation are referred
to as pseudorandom numbers. The deterministic
nature of these techniques is important because
it can be reproduced in computations. A facility
for generating sequences of pseudorandom num-
bers is a fundamental part of computer simula-
tion systems. Usually, in practice, such a facility
produces a deterministic sequence of values, but
externally these values should appear to be drawn
independently from auniform distribution between
Oand 1,i.e., they are independent and statistically
indistinguishable from a truly random sequence.
Furthermore, multiple independent streams of

DOI: 10.4018/978-1-5225-2255-3.ch111

random numbers are often required in simulation
studies, for instance, to facilitate synchronization
for variance-reduction purposes, and for making
independent replications.

A random number generator (RNG) is an al-
gorithm that starting from an initial seed (or seeds),
produces a stream of numbers that behaves as if
it were a random sample when analyzed using
statistical tests. The RNG is closely related to the
Deterministic Random Bit Generators (DRBGs).
See L’Ecuyer (1990, 2013) and references there-
in for more information on RNGs. We describe a
portable set of software utilities for uniform
random-number generation. It provides for mul-
tiple generators (streams) running simultane-
ously, and each generator (stream) has its sequence
of numbers partitioned into many long disjoint
contiguous substreams, see L’ Ecuyeretal. (2002).
Simple procedure calls allow the user to make
any generator ‘“jump’ ahead/back v steps (random
numbers). Implementation issues are discussed.
Thebasic underlying generator CMRG (Combined
Multiple Recursive Generator) combines two
multiple recursive random number generators
with a period length of approximately 2!
(=3.1x10%"), good speed, and excellent theoreti-
cal properties, e.g., the lattice structure, see
Kroeseetal. (2011) for alist of desired properties.

BACKGROUND

There are a number of methods for generating the
random numbers, of which the most popular are
the congruential methods (mixed, multiplicative,
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and additive). The (mixed) linear congruential
generators (LCGs) are defined by

T,
T, = (awH —l—c)MOD m, u, =—, x,&{L...
m

=1} i> 0.

where m (the modulus) is a positive integer (usually
a very large primary number), a (the multiplier)
€{1,...,m-1} and c (the increment) is a nonnega-
tive integer. This mathematical notation signifies
that x, is the remainder of (ax,_ +c) divided by m.
Hence, xie{ 1,...,m—1}. Thus, random variable u,
is a uniform O, 1 variable. Note that

c(a”—l)
z. =la's. + ——=|MOD m.
! a—1

Hence, every x, is completely determined by
m, a, ¢, and x. The sequence x, repeats once it
returns to a previously visited value. The period
of a generator is the length of a generated steam
before it begins to repeat. If Uy=u, (where p>0),
then the length p is called the period. The longest
possible period for a LCG is m, i.e., m represents
the desired number of different values that could
be generated for the random numbers. Hence, the
modulus m is often taken as a large prime number
close to the largest integer directly representable
on the computer (i.e., equal or near 2*'-1 for 32-
bit computers). If p=m, we say that the generator
has full period. The required conditions on how
to choose m, a, and c so that the corresponding
LCG will have full period are known, see Knuth
(1997) or Law (2014).

LCGs are sensitive with respect to the param-
eters, especially the value of a. When ¢>0, the
LCGs are called mixed LCGs. When ¢=0,

T,
r, =ar, MOD m, u =—, x&{l,...,m-1}

i>0.
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These LCGs are called multiplicative LCGs.
Most existing implementations of LCGs are mul-
tiplicative LCGs, because in general the value of
¢ does not have a large impact of the quality of
an LCG. Note that if x=0, then all subsequent x,
areidentically 0. Thus, the longest possible period
for a multiplicative LCG is m—1. Furthermore,

A a/‘":L"iMOD m

i+v

Most experts now recognize that small LCGs
with moduli around 2*! or so should no longer be
used as general-purpose random-number genera-
tors. Not only can one exhaust the period in a few
minutes on a PC (personal computer), but more
importantly the poor structure of the points can
dramatically bias simulation results for sample
sizes much smaller than the period length.

One way of extending the basic LCG is to
combine two or more LCGs through summation.
Another way of extending the basic LCG is to use
a higher-order recursion. A multiple recursive
random number generator (MRG), which goes
from integer to integer according to the recursion

T = (a T +...+ak:cz,7k)MOD m,u, = &
m

i 17i-1

Aseed x,...,7,_,,T G{l,...,m—l}
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where i, k, and m are positive integers, and a,...
,a, €{0,1,...,m~1} To increase the efficiency and
ease the implementation, the MRG algorithm
usually set all but two a’s to 0. Furthermore, the
nonzero a, should be small. However, L’Ecuyer
(2013) points that these conditions are generally
in conflict with those required for having a good
lattice structure and statistical robustness. See Law
(2014) on the lattice structure of pseudorandom
numbers. The longest possible period for a MRG
is m*~1 (L’Ecuyer, 1996). Other way of extending
the basic LCG is the additive congruential RNG
(ACRON). The ACRON sets a=1 and replace
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