
 H

3989

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: High Performance Computing

DOI: 10.4018/978-1-5225-2255-3.ch346

Cost Evaluation of Synchronization
Algorithms for Multicore Architectures

INTRODUCTION

One of the major issues in modern computer
architecture is multicore design. Programmers
have been urged to design innovative algorithms
by exploiting multicore facilities. Synchroniza-
tion, i.e., the technique adopted for coordinating
threads or processes to have appropriate execution
order, is one of the main issues in programming
on a multicore processor. In the literature, many
synchronization techniques based on hardware
and software have been proposed (Petrović, 2014;
Yoo, 2013; McKenney, 1998). Modern comput-
ers provide special hardware instructions that
allow to test and modify the content of a word
atomically (e.g., the cmpxchg instruction of Intel)
which can be used for synchronization of threads
(Valois, 1995; Gao, 2007). Software techniques
can synchronize threads without any dependency
on hardware instructions (McKenney, 1998;
Mellor-Crummey, 1991). One important aspect
of a synchronization algorithm is its performance,
which is evaluated in terms of overhead. In this
study, the term cost is used to address an overhead
of synchronization algorithm. The state-of-the-art
approaches strive to increase the performance by

reducing the cost of the synchronization. To the
best of the authors knowledge a study to analyze
the possible costs of synchronization mechanisms
is absent. So, this chapter investigates the costs in
the main steps of a synchronization mechanism.
Moreover, since memory access is one of the most
important costs in synchronization mechanisms,
a discrete time Markov chain model of memory
access cost is presented to evaluate the memory
access overhead.

The remainder of this chapter is organized as
follows. The primitives of the main synchroniza-
tion algorithms are described in Section 2. Then,
a theoretical evaluation of each cost and experi-
mental results are presented in Section 3. Finally,
some conclusions are described in Section 4.

BACKGROUND

When threads are working simultaneously on a
shared object, their synchronization should be
managed properly, otherwise the instructions of
different threads interleave on the shared object
in a wrong way. For example, Figure 1 shows the
program order of two threads that are working on

Masoud Hemmatpour
Politecnico di Torino, Italy

Renato Ferrero
Politecnico di Torino, Italy

Filippo Gandino
Politecnico di Torino, Italy

Bartolomeo Montrucchio
Politecnico di Torino, Italy

Maurizio Rebaudengo
Politecnico di Torino, Italy

Cost Evaluation of Synchronization Algorithms for Multicore Architectures

3990

the shared object counter (Silberschatz, 2006).
Since one thread is incrementing the counter
and another one is decrementing it, at the end,
the counter is expected to have the initial value.
However, as Figure 1 illustrates, there is a pos-
sible execution order of instructions that leads to
an incorrect result.

Synchronization mechanisms are used to avoid
the problematic interleaving instructions. The part
of the code that accesses to the shared object is
called critical section. The critical section should
be protected by synchronization primitives to avoid
concurrent access to the shared object:

•	 Ticket lock is a synchronization mecha-
nism to guarantee fairness execution to all
the threads. Ticket lock is a kind of spin-
lock that keeps checking to see if a lock is
available to acquire the lock. Ticket locks
are conceptually two bytes, one indicating
the current head of the queue, and the other
one indicating the current tail. The lock is
acquired by atomically noting the tail and
incrementing it by one (thus adding it to
the queue and noting the position), then

waiting until the head becomes equal to the
initial value of the tail (Piggin, 2008).

•	 Filter lock is a synchronization algorithm
that works for multiple threads. The fil-
ter lock creates N – 1 waiting lists, called
levels. A thread must pass through all the
levels before entering the critical section.
As shown in Figure 2, at level 0 at most N
threads are waiting. In level 1, at most N - 1
threads are waiting. The procedure contin-
ues till level N - 1, that corresponds to the
critical section, in which only one thread is
enabled to enter. Each level should satisfy
two properties: first, among the threads
that are trying to enter into a level, at least
one thread succeeds. Second, at least one
thread is blocked in the level (Herlihy,
2006).

•	 Readers -writer lock (rwlock) is intended
a solution for solving the readers-writ-
ers problem, where a resource is shared
among readers and writers. The readers-
writers problem happens when a reader
starts to read the first item of the shared
resource, then stores it in a local variable.

Figure 1. Incorrect execution of the instructions order

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/cost-evaluation-of-synchronization-algorithms-

for-multicore-architectures/184107

Related Content

The Analysis of a Power Information Management System Based on Machine Learning

Algorithm
Daren Li, Jie Shen, Jiarui Daiand Yifan Xia (2023). International Journal of Information Technologies and

Systems Approach (pp. 1-14).

www.irma-international.org/article/the-analysis-of-a-power-information-management-system-based-on-machine-learning-

algorithm/327003

A Complex Adaptive Systems-Based Enterprise Knowledge Sharing Model
Cynthia T. Smalland Andrew P. Sage (2008). International Journal of Information Technologies and

Systems Approach (pp. 38-56).

www.irma-international.org/article/complex-adaptive-systems-based-enterprise/2538

A Comparative Analysis of a Novel Anomaly Detection Algorithm with Neural Networks
Srijan Das, Arpita Dutta, Saurav Sharmaand Sangharatna Godboley (2017). International Journal of Rough

Sets and Data Analysis (pp. 1-16).

www.irma-international.org/article/a-comparative-analysis-of-a-novel-anomaly-detection-algorithm-with-neural-

networks/186855

Communities of Practice from a Phenomenological Stance: Lessons Learned for IS Design
Giorgio De Michelis (2012). Phenomenology, Organizational Politics, and IT Design: The Social Study of

Information Systems (pp. 57-67).

www.irma-international.org/chapter/communities-practice-phenomenological-stance/64677

Causal Mapping: An Historical Overview
V. K. Narayanan (2005). Causal Mapping for Research in Information Technology (pp. 1-19).

www.irma-international.org/chapter/causal-mapping-historical-overview/6512

http://www.igi-global.com/chapter/cost-evaluation-of-synchronization-algorithms-for-multicore-architectures/184107
http://www.igi-global.com/chapter/cost-evaluation-of-synchronization-algorithms-for-multicore-architectures/184107
http://www.irma-international.org/article/the-analysis-of-a-power-information-management-system-based-on-machine-learning-algorithm/327003
http://www.irma-international.org/article/the-analysis-of-a-power-information-management-system-based-on-machine-learning-algorithm/327003
http://www.irma-international.org/article/complex-adaptive-systems-based-enterprise/2538
http://www.irma-international.org/article/a-comparative-analysis-of-a-novel-anomaly-detection-algorithm-with-neural-networks/186855
http://www.irma-international.org/article/a-comparative-analysis-of-a-novel-anomaly-detection-algorithm-with-neural-networks/186855
http://www.irma-international.org/chapter/communities-practice-phenomenological-stance/64677
http://www.irma-international.org/chapter/causal-mapping-historical-overview/6512

