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Decimal Hardware Multiplier

INTRODUCTION

IEEE-754 2008 has extended the standard with 
decimal floating point arithmetic. Human-centric 
applications, like financial and commercial, 
depend on decimal arithmetic since the results 
must match exactly those obtained by human 
calculations without being subject to errors caused 
by decimal to binary conversions. Decimal Mul-
tiplication is a fundamental operation utilized in 
many algorithms and it is referred in the standard 
IEEE-754 2008. Decimal multiplication has an 
inherent difficulty associated with the representa-
tion of decimal numbers using a binary number 
system. Both bit and digit carries, as well as invalid 
results, must be considered in decimal multiplica-
tion in order to produce the correct result.

This article focuses on algorithms for hardware 
implementation of decimal multiplication. Both 
decimal fixed-point and floating-point multiplica-
tion are described, including iterative and parallel 
solutions.

BACKGROUND

Usually, humans perform arithmetic operations 
using decimal arithmetic. However, computers do 
it with binary arithmetic. It means that perform-
ing decimal operations in a computer without 
support for decimal arithmetic is subject to errors 
from representing decimal numbers, converting 
them and rounding. In fact, it is easy find decimal 
numbers that cannot be represented exactly in 
binary format (e.g., 0.1). Several examples exist 
where errors due to binary calculation of decimal 
numbers are obtained. A clarifying example came 
from the Vancouver Stock Exchange (Quinn, K., 

1983), where due to rounding errors an initial index 
value of 1000.000 dropped to 574.081 instead of 
the correct result of 1098.892.

In fact, the business and commercial markets 
were one of the triggers for the importance of 
decimal computer arithmetic since many com-
mercial databases have more than 50% of the 
numerical data represented in decimal (Tsang, 
A. & Olschanowsky, M., 1991). In these cases, 
to avoid errors with undesirable consequences it 
is important to have a complete system to support 
decimal arithmetic.

At the era of electronic computers, both 
binary and decimal arithmetic functions were 
considered. We had computer systems, like the 
ENIAC (Goldstine, H. & Goldstine, A., 1996) 
and IBM 650 (Knuth, D., 1986) implement-
ing arithmetic functions in decimal, and others 
like EDSAC (Wilkes, M., 1997) and EDVAC 
(Williams, M., 1993) that adopted binary based 
arithmetic implementations. Both arithmetic 
systems were still considered after the advent of 
transistorized computers with decimal numbers 
represented with four bits following different 
representations, like in Binary-Coded Decimal 
(BCD) format. However, soon binary arithmetic 
was adopted by most computer systems since at 
that time scientific computing, whose operations 
could be more efficiently implemented in binary, 
were more in demand than financial computing 
that requires decimal arithmetic to avoid costs 
from representation errors. So, binary became 
very popular, while decimal was supported only 
by some computers in the 1960s and 1970s.

Precise decimal arithmetic operations with 
binary based computing systems are done in 
software. In some cases, these binary-based com-
puting systems include some specific hardware 
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instructions that are hardware supported and so 
software algorithms can take advantage of them 
to speed-up execution. Several languages include 
primate decimal datatypes, including Ada, CO-
BOL, and SQL. Several other languages support 
the GDAS (General Decimal Arithmetic Speci-
fication) (Cowlishaw, M., 2008), including the 
IBM C DecNumber Library (Cowlishaw), the Java 
BigDecimal (Sun Microsystems), Eiffel Decimal 
Arithmetic (Crismer), Python Decimal (Batista), 
among others. Decimal floating point extensions 
conforming to the IEEE 754-2008 standard were 
proposed for C (JTC 1, 2007) and C++ (JTC 1, 
2008) languages. These extensions were supported 
by GNU C compiler 4.2 release. Intel has also 
developed a decimal floating-point math library 
(Intel) that implements decimal floating-point 
arithmetic specified in IEEE 754-2008.

Hardware support for decimal arithmetic is 
needed if the percentage of time spent executing 
decimal functions from these software libraries is 
relevant. Two different perspectives have emerged 
in the end of the last decade. Wang (Wang, 
L.-K., et al., 2007), examined several financial 
benchmarks and concluded that the time spent on 
executing decimal operations ranged from 33.9% 
to 93.1%. On the contrary, a research from Intel 
(Cornea, M. & Crawford, J., 2007) concluded 
that most commercial applications spend less 
than 5% executing decimal operations. Therefore, 
hardware for decimal arithmetic is not a priority 
in the design of Intel’s processors. In fact, Intel 
x86 processors offer only a set of eight fixed-point 
decimal arithmetic instructions, and Motorola 
68K reduces this set to just five instructions. On 
the other side, several IBM’s processors include 
a considerable support for decimal arithmetic. 
The S/390 processor (ESA/390, 2001) includes a 
dedicated decimal adder to execute decimal fixed 
point addition, subtraction, multiplication and di-
vision. The last two, are executed iteratively using 
additions and subtractions. The IBM System z9 
(Duale, A. et al., 2007) and System z10 (Schwarz, 
E., Kapernick, J., & Cowlishaw, M., 2009) already 
include a decimal floating-point arithmetic unit 

in conformance with IEEE 754-2008 standard. 
The GNU C Compiler (GCC) 4.3 Release and 
several compilers from IBM (e.g., IBM XL C/
C++ (IBM)) were extended and developed to 
utilize the dedicated instructions and hardware 
units present in these IBM’s processors.

DECIMAL MULTIPLICATION

Hardware implementations for decimal multipli-
cation can be classified according to the type of 
operands to be multiplied as fixed or floating-point, 
whether the operands are fixed or floating-point, 
respectively.

Fixed-point multiplication follows generically 
the typical hand process that starts by generat-
ing partial products, followed by reduction of 
the partial products using decimal addition. The 
process can be either based on iterative or paral-
lel algorithms. In the iterative approach partial 
products are generated and accumulated step-by-
step in an iterative process, while in the parallel 
case partial products are generated in parallel and 
merged with an adder tree.

Decimal floating-point multiplication typically 
uses a fixed-point decimal multiplier to multiply 
the trailing significant fields, together with ex-
ponent addition, rounding and sign calculation, 
similar to a binary multiplier.

Designs for both fixed- and floating-point 
multipliers were proposed in different target tech-
nologies: Application Specific Integrated Circuit 
(ASIC) and Field Programmable Gate Arrays 
(FPGAs). FPGA-based solutions are flexible and 
can be configured with different operand sizes. 
Many existing solutions are optimized for specific 
technologies and therefore may not be the most 
appropriate solution when migrated from one 
technology to the other.

In the following, the basic algorithms and ar-
chitectures of each type of decimal multiplier are 
introduced together with state-of-the-art proposals 
based on each of these types and technologies.
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