
 I

4607

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: IT Research and Theory

DOI: 10.4018/978-1-5225-2255-3.ch400

Decimal Hardware Multiplier

INTRODUCTION

IEEE-754 2008 has extended the standard with
decimal floating point arithmetic. Human-centric
applications, like financial and commercial,
depend on decimal arithmetic since the results
must match exactly those obtained by human
calculations without being subject to errors caused
by decimal to binary conversions. Decimal Mul-
tiplication is a fundamental operation utilized in
many algorithms and it is referred in the standard
IEEE-754 2008. Decimal multiplication has an
inherent difficulty associated with the representa-
tion of decimal numbers using a binary number
system. Both bit and digit carries, as well as invalid
results, must be considered in decimal multiplica-
tion in order to produce the correct result.

This article focuses on algorithms for hardware
implementation of decimal multiplication. Both
decimal fixed-point and floating-point multiplica-
tion are described, including iterative and parallel
solutions.

BACKGROUND

Usually, humans perform arithmetic operations
using decimal arithmetic. However, computers do
it with binary arithmetic. It means that perform-
ing decimal operations in a computer without
support for decimal arithmetic is subject to errors
from representing decimal numbers, converting
them and rounding. In fact, it is easy find decimal
numbers that cannot be represented exactly in
binary format (e.g., 0.1). Several examples exist
where errors due to binary calculation of decimal
numbers are obtained. A clarifying example came
from the Vancouver Stock Exchange (Quinn, K.,

1983), where due to rounding errors an initial index
value of 1000.000 dropped to 574.081 instead of
the correct result of 1098.892.

In fact, the business and commercial markets
were one of the triggers for the importance of
decimal computer arithmetic since many com-
mercial databases have more than 50% of the
numerical data represented in decimal (Tsang,
A. & Olschanowsky, M., 1991). In these cases,
to avoid errors with undesirable consequences it
is important to have a complete system to support
decimal arithmetic.

At the era of electronic computers, both
binary and decimal arithmetic functions were
considered. We had computer systems, like the
ENIAC (Goldstine, H. & Goldstine, A., 1996)
and IBM 650 (Knuth, D., 1986) implement-
ing arithmetic functions in decimal, and others
like EDSAC (Wilkes, M., 1997) and EDVAC
(Williams, M., 1993) that adopted binary based
arithmetic implementations. Both arithmetic
systems were still considered after the advent of
transistorized computers with decimal numbers
represented with four bits following different
representations, like in Binary-Coded Decimal
(BCD) format. However, soon binary arithmetic
was adopted by most computer systems since at
that time scientific computing, whose operations
could be more efficiently implemented in binary,
were more in demand than financial computing
that requires decimal arithmetic to avoid costs
from representation errors. So, binary became
very popular, while decimal was supported only
by some computers in the 1960s and 1970s.

Precise decimal arithmetic operations with
binary based computing systems are done in
software. In some cases, these binary-based com-
puting systems include some specific hardware

Mário Pereira Vestias
INESC-ID/ISEL/IPL, Portugal

Decimal Hardware Multiplier

4608

instructions that are hardware supported and so
software algorithms can take advantage of them
to speed-up execution. Several languages include
primate decimal datatypes, including Ada, CO-
BOL, and SQL. Several other languages support
the GDAS (General Decimal Arithmetic Speci-
fication) (Cowlishaw, M., 2008), including the
IBM C DecNumber Library (Cowlishaw), the Java
BigDecimal (Sun Microsystems), Eiffel Decimal
Arithmetic (Crismer), Python Decimal (Batista),
among others. Decimal floating point extensions
conforming to the IEEE 754-2008 standard were
proposed for C (JTC 1, 2007) and C++ (JTC 1,
2008) languages. These extensions were supported
by GNU C compiler 4.2 release. Intel has also
developed a decimal floating-point math library
(Intel) that implements decimal floating-point
arithmetic specified in IEEE 754-2008.

Hardware support for decimal arithmetic is
needed if the percentage of time spent executing
decimal functions from these software libraries is
relevant. Two different perspectives have emerged
in the end of the last decade. Wang (Wang,
L.-K., et al., 2007), examined several financial
benchmarks and concluded that the time spent on
executing decimal operations ranged from 33.9%
to 93.1%. On the contrary, a research from Intel
(Cornea, M. & Crawford, J., 2007) concluded
that most commercial applications spend less
than 5% executing decimal operations. Therefore,
hardware for decimal arithmetic is not a priority
in the design of Intel’s processors. In fact, Intel
x86 processors offer only a set of eight fixed-point
decimal arithmetic instructions, and Motorola
68K reduces this set to just five instructions. On
the other side, several IBM’s processors include
a considerable support for decimal arithmetic.
The S/390 processor (ESA/390, 2001) includes a
dedicated decimal adder to execute decimal fixed
point addition, subtraction, multiplication and di-
vision. The last two, are executed iteratively using
additions and subtractions. The IBM System z9
(Duale, A. et al., 2007) and System z10 (Schwarz,
E., Kapernick, J., & Cowlishaw, M., 2009) already
include a decimal floating-point arithmetic unit

in conformance with IEEE 754-2008 standard.
The GNU C Compiler (GCC) 4.3 Release and
several compilers from IBM (e.g., IBM XL C/
C++ (IBM)) were extended and developed to
utilize the dedicated instructions and hardware
units present in these IBM’s processors.

DECIMAL MULTIPLICATION

Hardware implementations for decimal multipli-
cation can be classified according to the type of
operands to be multiplied as fixed or floating-point,
whether the operands are fixed or floating-point,
respectively.

Fixed-point multiplication follows generically
the typical hand process that starts by generat-
ing partial products, followed by reduction of
the partial products using decimal addition. The
process can be either based on iterative or paral-
lel algorithms. In the iterative approach partial
products are generated and accumulated step-by-
step in an iterative process, while in the parallel
case partial products are generated in parallel and
merged with an adder tree.

Decimal floating-point multiplication typically
uses a fixed-point decimal multiplier to multiply
the trailing significant fields, together with ex-
ponent addition, rounding and sign calculation,
similar to a binary multiplier.

Designs for both fixed- and floating-point
multipliers were proposed in different target tech-
nologies: Application Specific Integrated Circuit
(ASIC) and Field Programmable Gate Arrays
(FPGAs). FPGA-based solutions are flexible and
can be configured with different operand sizes.
Many existing solutions are optimized for specific
technologies and therefore may not be the most
appropriate solution when migrated from one
technology to the other.

In the following, the basic algorithms and ar-
chitectures of each type of decimal multiplier are
introduced together with state-of-the-art proposals
based on each of these types and technologies.

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/decimal-hardware-multiplier/184168

Related Content

Management Model for University-Industry Linkage Based on the Cybernetic Paradigm: Case of

a Mexican University
Yamilet Nayeli Reyes Moralesand Javier Suárez-Rocha (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-18).

www.irma-international.org/article/management-model-for-university-industry-linkage-based-on-the-cybernetic-

paradigm/304812

Communities of Practice as a Source of Open Innovation
Diane-Gabrielle Tremblay (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

5027-5035).

www.irma-international.org/chapter/communities-of-practice-as-a-source-of-open-innovation/184205

Research Intentions are Nothing without Technology: Mixed-Method Web Surveys and the

Coberen Wall of Pictures Protocol
Stéphane Ganassaliand Carmen Rodriguez-Santos (2013). Advancing Research Methods with New

Technologies (pp. 138-156).

www.irma-international.org/chapter/research-intentions-nothing-without-technology/75943

Probability Based Most Informative Gene Selection From Microarray Data
Sunanda Dasand Asit Kumar Das (2018). International Journal of Rough Sets and Data Analysis (pp. 1-

12).

www.irma-international.org/article/probability-based-most-informative-gene-selection-from-microarray-data/190887

Hybrid Artificial Intelligence Heuristics and Clustering Algorithm for Combinatorial Asymmetric

Traveling Salesman Problem
K Ganesh, R. Dhanlakshmi, A. Tangaveluand P Parthiban (2009). Utilizing Information Technology

Systems Across Disciplines: Advancements in the Application of Computer Science (pp. 1-36).

www.irma-international.org/chapter/hybrid-artificial-intelligence-heuristics-clustering/30714

http://www.igi-global.com/chapter/decimal-hardware-multiplier/184168
http://www.irma-international.org/article/management-model-for-university-industry-linkage-based-on-the-cybernetic-paradigm/304812
http://www.irma-international.org/article/management-model-for-university-industry-linkage-based-on-the-cybernetic-paradigm/304812
http://www.irma-international.org/chapter/communities-of-practice-as-a-source-of-open-innovation/184205
http://www.irma-international.org/chapter/research-intentions-nothing-without-technology/75943
http://www.irma-international.org/article/probability-based-most-informative-gene-selection-from-microarray-data/190887
http://www.irma-international.org/chapter/hybrid-artificial-intelligence-heuristics-clustering/30714

