
Category: Systems and Software Engineering

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

7392

DOI: 10.4018/978-1-5225-2255-3.ch643

The Challenges of Teaching and Learning 
Software Programming to Novice Students

INTRODUCTION

Software Engineering is an engineering discipline 
that involves with all aspect of software devel-
opment that applies engineering approaches in 
order to deliver high quality software products 
(Pressman, 2005). One of the important stages 
of software production is coding in which soft-
ware blueprints are realized via a programming 
language; a programming language is a language 
that is understandable for computers (Sommer-
vile, 2007). Table 1 shows the general phases of 
software development. Coding and programming 
language skills are required from phase four but 
knowledge and understanding of programming 
language is very helpful in previous phases in 
order to successfully complete a software project.

There has been a dramatic demand increase for 
software applications that promises a rewarding 
carrier for those who poses the required skills. 
With the fast advances in technology and emerg-
ing ones like driverless cars, Internet of Things 
(IoT) (Pandya & Champaneria, 2015), Big Data 

(Sharma & Mangat, 2015), Software Defined 
Networks (Bizanis & Kuipers, 2016) etc. it is 
expected that more software programmers will 
be required in the future. As the result of such 
demands, various online and offline courses to 
introductory programming have been provided.

While knowing software coding is a very 
useful skill, it is difficult to learn programming 
especially at the beginning level since acquisition 
of complex new knowledge, associated strategies, 
and practical skills are required (Robins, Rountree, 
& Rountree, 2003). Software development courses 
are generally among difficult subjects and have 
low pass rates; according to (Dehnadi & Bornat, 
2006) the fail rate of first programming papers in 
university computer science programmes can be 
up to 60 percent.

However, what are the reasons that make learn-
ing and teaching programming difficult? Why 
do students find it so challenging? And, why the 
success rates of programming classes are amongst 
the lowest in computer science papers? The next 
section tries to identify the reasons and issues 

Seyed Reza Shahamiri
Manukau Institute of Technology, New Zealand

Table 1. Generic software development life cycle phases

No Name Description

1 Planning The planning phase is the fundamental process of understanding why an information system should be built 
and determining how the project team will go about building it.

2 Analysis The analysis phase answers the questions of who will use the system, what the system will do, and where 
and when it will be used.

3 Design Based on the user requirements, planning and the detailed analysis, the new system must be designed i.e. a 
blueprint of the system is created by designing the technical architecture.

4 Implementation Actually implementing the designed system; writing software programs using software languages.

5 Testing Checking whether the implemented software works according to specified requirements; fixing bugs/errors.

6 Maintenance To ensure that the implemented system is properly functioning as per the requirements.



 S

Category: Systems and Software Engineering

7393

that make learning introductory programming 
challenging. Next, some teaching and learning 
guidelines are provided to facilitate some of the 
identified challenges. Finally, recommendations 
for future studies are provided. The guidelines 
provided in this chapter are based on the literature 
and the author’s extensive experience in teaching 
software programming.

BACKGROUND

This section provides a background of the problem 
and explains the issues in software programming 
teaching and learning.

Since software is intangible and cannot be seen 
or touched, creating software products can be a 
very complex task in comparison to most of the 
other engineering products; a software project can 
fail easily and lead to poor quality and unreliable 
products (Ammann & Offutt, 2008). On the other 
hand, software applications play very important 
and critical roles in modern life because they 
control vital operations that require attributes 
such as security, reliability, performance, etc., 
qualities that are hard to achieve (Spillner, Linz, 
& Schaefer, 2007).

Because of the intangible nature of software, 
and since students cannot directly sense what they 
have created, it can become very complex to them 
to successfully implement, debug and verify the 
product. In addition, it is more challenging to teach 
and learn the introduction of coding since this is 
where the students understand the very basics of 
software nature and expose to entities and concepts 
that are generally new to them. They also need to 
design algorithms and implement them via pro-
gramming language tools and commands in order 
to perform the required software functionalities.

Although teaching and learning a program-
ming language may be seen as teaching human 
languages such as English, it is much more com-
plicated. Teaching a human language is mainly 
concerned about the language syntax, learning 
the vocabularies, and how to put them in to use. 

This part is similar to teaching programming 
language as there are syntax and vocabularies 
(i.e. commands) with specific meanings in that 
particular language. The main difference is, in 
teaching human languages we show the students 
the tools to express their taught and feelings in 
order to communicate, but we do not teach them 
what to say. To put it differently, we all know 
what we want to say, typically, but we may not 
know how to do it in a particular language. On 
the other hand, with programming languages we 
need to teach our students what to ask a computer 
together with how to ask it, and we need to be very 
specific while following the language syntax and 
steps of the algorithms thoroughly as computers 
have zero tolerance in regards to syntax errors. In 
other words, computer programs do not run even 
with a single syntax error.

Furthermore, there is a difference between 
coding knowledge and strategies. The former pro-
vides a declarative nature of programming, such 
as being able to state how an algorithm works, but 
the last deals with the practical applications of the 
knowledge, such as how and where to apply the 
algorithm (Davies, 1993). Programmers need to 
think outside the box and be creative in applying 
and creating knowledge in order to formulate a 
software solution.

Essentially learning programming requires the 
learners to develop their problem solving skills. 
As mentioned earlier, the first step of software 
development is to understand the problem domain, 
analyze it, and then to propose a solution including 
design concepts and algorithms to perform the 
required functionalities. The next step is to relaying 
commands to computer systems using a program-
ing language in order to implement the designs and 
algorithms. The challenge is, regardless of how 
experience the programmer is, there will be various 
errors either due to syntax mismatch or incorrect 
semantic, and they need to deal with unexpected 
program behaviors frequently. Although modern 
Integrated Development Environments (IDEs) 
perform analysis on the code to highlight most 
of the syntax errors and some obvious compile 



 

 

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/the-challenges-of-teaching-and-learning-

software-programming-to-novice-students/184437

Related Content

Machine-to-Machine Communications
Rashid A. Saeed, Mohammed A. Al-Magbouland Rania A. Mokhtar (2015). Encyclopedia of Information

Science and Technology, Third Edition (pp. 6195-6206).

www.irma-international.org/chapter/machine-to-machine-communications/113077

From Linguistic Determinism to Technological Determinism
Russell H. Kaschulaand Andre M. Mostert (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 4564-4574).

www.irma-international.org/chapter/from-linguistic-determinism-to-technological-determinism/112898

A Critical Theory Approach to Information Technology Transfer to the Developing World and a

Critique of Maintained Assumptions in the Literature
Khalid Al-Mabrouk (2009). Information Systems Research Methods, Epistemology, and Applications (pp.

73-87).

www.irma-international.org/chapter/critical-theory-approach-information-technology/23469

An Introduction to Clustering Algorithms in Big Data
Rajit Nairand Amit Bhagat (2021). Encyclopedia of Information Science and Technology, Fifth Edition (pp.

559-576).

www.irma-international.org/chapter/an-introduction-to-clustering-algorithms-in-big-data/260214

Information Systems, Software Engineering, and Systems Thinking: Challenges and

Opportunities
Doncho Petkov, Denis Edgar-Nevill, Raymond Madachyand Rory O’Connor (2008). International Journal of

Information Technologies and Systems Approach (pp. 62-78).

www.irma-international.org/article/information-systems-software-engineering-systems/2534

http://www.igi-global.com/chapter/the-challenges-of-teaching-and-learning-software-programming-to-novice-students/184437
http://www.igi-global.com/chapter/the-challenges-of-teaching-and-learning-software-programming-to-novice-students/184437
http://www.irma-international.org/chapter/machine-to-machine-communications/113077
http://www.irma-international.org/chapter/from-linguistic-determinism-to-technological-determinism/112898
http://www.irma-international.org/chapter/critical-theory-approach-information-technology/23469
http://www.irma-international.org/chapter/an-introduction-to-clustering-algorithms-in-big-data/260214
http://www.irma-international.org/article/information-systems-software-engineering-systems/2534

