
 S

7447

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software Engineering

DOI: 10.4018/978-1-5225-2255-3.ch648

Model-Driven Software Modernization

INTRODUCTION

Most vital software systems in companies have 
been developed several years ago with technol-
ogy that today can be considered obsolete and 
unaligned with their current strategic objectives. 
These legacy systems plays a central role in the 
company´s information system. They are often 
large business-critical applications that have in-
volved the investment of money, time and other 
resources through the years. Therefore, companies 
are facing the problematic of having to modernize 
or replace their legacy software systems.

Unlike the maintenance, software moderniza-
tion involves significant changes in the structure 
and functionality of a legacy system with the aim 
of increasing its strategic value. Software modern-
ization, understood as technological and functional 
evolution of legacy systems, provides principles, 
methods, techniques and tools to support the 
transformation from an existing software system 
to a new one that satisfies new requirements. It 
is related to reverse engineering, restructuring, 
forward engineering and reengineering processes. 
The definitions given by Chikofsky and Cross 
(1990) for these processes are still in force beyond 
the technological evolution:

•	 Reverse engineering is the process of ana-
lyzing a subject system to identify the sys-
tem’s components and their interrelation-
ships and, create representations of the 

system in another form or at a higher level 
of abstraction.

•	 Restructuring is the transformation from 
one representation form to another at the 
same relative abstraction level while pre-
serving the subject system´s external be-
havior (functionality and semantic).

•	 Forward engineering is the traditional pro-
cess of moving from high-level abstractions 
and logical, implementation-independent 
designs to the physical implementation of 
a system.

•	 Reengineering is the examination and al-
teration of a subject system to reconstitute 
it in a new form and the subsequent imple-
mentation of the new form.

The term Refactoring, introduced by Martin 
Fowler, defines a special kind of restructuring in 
object-oriented code (Fowler, 1999). One of the 
advantages of software modernization versus tra-
ditional software reengineering is that the former 
allows discovering and refactoring object-oriented 
models at a high level of abstraction, such as busi-
ness process models.

Software modernization faces many challenges 
due to the proliferation of new technologies such 
as mobile computing and cloud computing. Thus, 
novel technical frameworks for information inte-
gration and tool interoperability are needed. The 
Model Driven Development (MDD) appears to 
be an interesting approach to address these chal-

Liliana Maria Favre
Universidad Nacional Del Centro De La Provincia De Buenos Aires, Argentina

Liliana Martinez
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Claudia Teresa Pereira
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina



Model-Driven Software Modernization

7448

lenges since it provides principles and techniques 
to represent software systems through models at 
different levels of abstraction. MDD refers to a 
range of development approaches based on the 
use of software models as first class entities. 
The most well-known realization of MDD is the 
OMG standard Model Driven Architecture (MDA) 
(MDA, 2016). The outstanding ideas behind MDA 
are separating the specification of the system 
functionality from its implementation on specific 
platforms, managing the software evolution from 
abstract models to implementations increasing the 
degree of automation of model transformations and 
achieving interoperability with multiple platforms, 
programming languages and formal languages. 
The essence of MDA is the Meta Object Facility 
Metamodel (MOF) that allows different kinds of 
software artifacts to be used together in a single 
project (MOF, 2015). Models play a major role in 
MDA which distinguishes Computation Indepen-
dent Model (CIM), Platform Independent Model 
(PIM) and Platform Specific Model (PSM). Some 
authors also distinguish Implementation Specific 
Model (ISM) as a description (specification) of 
the system in source code. To express transforma-
tions, OMG defined the MOF 2.0 Query, View, 
Transformation (QVT) metamodel (QVT, 2015).

OMG Architecture-Driven Modernization 
Task Force (ADMTF) is developing a set of 
specifications and promoting industry consen-
sus on modernization of existing applications 
(ADM, 2016). In the ADM context, software 
modernization can be summarized as follows. 
First, information is extracted out of the system 
artifacts. Second, this information is analyzed in 
order to take adequate modernization decisions 
and finally, the information must be transformed 
to new artifacts. These steps are supported by 
metamodels to describe existing systems, dis-
coverers to automatically create models of these 
systems and, tools to understand and transform 
complex models created out of existing systems. 
The Knowledge Discovery Metamodel (KDM) and 
the Abstract Syntax Tree Metamodel (ASTM) are 

two complementary and relevant ADM standards 
(KDM, 2011) (ASTM, 2011).

This chapter analyzes ADM-based software 
modernization. It provides an overview of 
the-state-of-the-art in software modernization 
techniques. Taxonomy of different techniques is 
described. A description of how traditional tech-
niques such as static and dynamic analysis can be 
integrated with ADM standards is presented. We 
propose a framework for ADM software modern-
ization that integrates different paradigms. Finally, 
challenges and strategic directions in software 
modernization are included.

BACKGROUND

25 years ago, modernization focused mainly on 
reverse engineering for recovering high-level 
architectures or diagrams from procedural code 
to face up with problems such as comprehending 
data structures or databases or the Y2K problem. 
At that time, many different kinds of static analysis 
techniques had been developed and several studies 
had been carried out to compare them.

Later years, new approaches were developed 
to identify objects into legacy code and trans-
late this code into an object-oriented language. 
Object-oriented programs are essentially dynamic 
and present particular problems linked to poly-
morphism and late binding, abstract classes and 
dynamically typed languages. Then, the focus of 
object-oriented software analysis moved from 
static analysis to dynamic one, more precisely 
static analysis was complemented with dynamic 
one. Many works had contributed to reverse en-
gineering object-oriented code. Muller, Jahnke, 
Smith, Storey, Tilley, and Wong (2000) present 
a roadmap for reverse engineering research for 
the first decade of the 2000s. Fanta and Rajlich 
(1998) describe the reengineering of a deterio-
rated object-oriented industrial program written 
in C++. Systa (2000) describes an experimental 
environment to reverse engineer JAVA software 



 

 

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/model-driven-software-modernization/184442

Related Content

Requirements Prioritization and Design Considerations for the Next Generation of Corporate

Environmental Management Information Systems: A Foundation for Innovation
Matthias Gräuler, Frank Teuteberg, Tariq Mahmoudand Jorge Marx Gómez (2013). International Journal of

Information Technologies and Systems Approach (pp. 98-116).

www.irma-international.org/article/requirements-prioritization-design-considerations-next/75789

An Empirical Study on the Landscape of Mining and Mineral Processing (MMP) With Big Data
Ruiyun Duan (2023). International Journal of Information Technologies and Systems Approach (pp. 1-22).

www.irma-international.org/article/an-empirical-study-on-the-landscape-of-mining-and-mineral-processing-mmp-with-big-

data/318041

Decision Support System for Assigning Members to Agile Teams
Fernando Almeida, Diogo Adãoand Catarina Martins (2019). International Journal of Information

Technologies and Systems Approach (pp. 43-60).

www.irma-international.org/article/decision-support-system-for-assigning-members-to-agile-teams/230304

Carbon Capture From Natural Gas via Polymeric Membranes
Nayef Mohamed Ghasem, Nihmiya Abdul Rahimand Mohamed Al-Marzouqi (2018). Encyclopedia of

Information Science and Technology, Fourth Edition (pp. 3043-3055).

www.irma-international.org/chapter/carbon-capture-from-natural-gas-via-polymeric-membranes/184017

Meta-Context Ontology for Self-Adaptive Mobile Web Service Discovery in Smart Systems
Salisu Garba, Radziah Mohamadand Nor Azizah Saadon (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-26).

www.irma-international.org/article/meta-context-ontology-for-self-adaptive-mobile-web-service-discovery-in-smart-

systems/307024

http://www.igi-global.com/chapter/model-driven-software-modernization/184442
http://www.irma-international.org/article/requirements-prioritization-design-considerations-next/75789
http://www.irma-international.org/article/an-empirical-study-on-the-landscape-of-mining-and-mineral-processing-mmp-with-big-data/318041
http://www.irma-international.org/article/an-empirical-study-on-the-landscape-of-mining-and-mineral-processing-mmp-with-big-data/318041
http://www.irma-international.org/article/decision-support-system-for-assigning-members-to-agile-teams/230304
http://www.irma-international.org/chapter/carbon-capture-from-natural-gas-via-polymeric-membranes/184017
http://www.irma-international.org/article/meta-context-ontology-for-self-adaptive-mobile-web-service-discovery-in-smart-systems/307024
http://www.irma-international.org/article/meta-context-ontology-for-self-adaptive-mobile-web-service-discovery-in-smart-systems/307024

