
 S

7459

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software Engineering

DOI: 10.4018/978-1-5225-2255-3.ch649

Mutation Testing Applied to
Object-Oriented Languages

INTRODUCTION

Mutation testing is a suitable technique to de-
termine the quality of test suites designed for a
certain program. This testing technique is based
on the creation of mutants, that is, versions of the
original program with an intentionally introduced
fault. Mutations are inserted within the code
through some defined rules called mutation op-
erators. The underlying idea is that a good set of
test cases for the system under test (SUT) should
be able to detect any changes generated affecting
the behavior of the application.

Test cases are supposed to produce the correct
output when they are run on the original program.
When the output of a mutant is different from
the output of the original program for a test case,
the mutation has been revealed and the mutant is
classified as dead. Otherwise, the mutant is still
alive and needs to be executed against the rest of
the test cases to detect its modification. Hence,
if some mutants remain alive after the whole test
suite execution, new test cases can be added in
order to kill these surviving mutants. However,
we classify a surviving mutant as equivalent when
the meaning of the program has not actually been
modified despite the injected mutation.

Mutation operators represent typical mistakes
made when programming and they produce a
simple syntactic change in the SUT. Mutation
testing is a white-box testing technique, i.e., it tests

a program at the source code level. Therefore, the
set of mutation operators and the overall technique
should be developed around each programming
language in particular; the correct choice of the set
is one of the keys to successful mutation testing.
Thus, we can find an assortment of research stud-
ies devoted to the definition of mutation operators
for specific languages and tools automating the
generation of mutants.

In the same sense, a set of mutation operators
can be defined at different levels in each lan-
guage. Mutation operators mainly dealing with
variables, operators or constants were designed
for some procedural programs in the early years
of the technique. However, other mainstream
languages as Java, C# or C++ also include object
orientation and completely different mutation
operators are needed to test the new structures
in these languages. As an example, the operator
IHD (Hiding Variable Deletion) deletes a variable
member in a subclass which is hiding a variable
in a parent class:

Original code:
class Base{ class Child: public

Base{

public: public:

 … …

 int v; int v;

}; };

Mutated code:

Pedro Delgado-Pérez
University of Cádiz, Spain

Inmaculada Medina-Bulo
University of Cádiz, Spain

Juan José Domínguez-Jiménez
University of Cádiz, Spain

Mutation Testing Applied to Object-Oriented Languages

7460

class Base{ class Child: public

Base{

public: public:

 … …

 int v; /*IHD*/

}; };

The purpose of the chapter is to look in depth
at the development and the current state of muta-
tion testing, and more specifically, with regard to
object-oriented programming languages, in order
to widely make known this technique in the com-
puter science research field. Next sections deal
with the related work, the steps to accomplish in
the mutation testing process, the approaches to
evaluate mutation operators and the existing tech-
niques to improve the problems of this technique:
equivalent mutant detection, test data generation
and the expensive computational cost. Finally, the
definition and evaluation of mutation operators
for object-oriented languages will be focused.

BACKGROUND

Mutation testing was originally proposed by
Hamlet (1977) and DeMillo, Lipton and Sayward
(1978) and its development has taken place in
parallel with the appearance of the different
programming languages (Offutt & Untch, 2001).
As a result, in the early years, most of the works
centered on procedural programming languages:
Agrawal et al. (1989) defined a set of 77 mutation
operators for C, the tool Mothra was developed
including 22 operators to apply mutation testing
to Fortran (King & Offutt, 1991) and Offutt and
Pan (1996) composed a set of 65 operators for the
Ada language. The mutation operators for these
procedural languages are known as traditional
operators.

However, recently, new languages and para-
digms have drawn the attention as well as the
research has expanded towards other domains
(Jia & Harman, 2011). As an illustration, we can
find testing tools for rather different languages

like SQLMutation for SQL (Tuya, Suárez-Cabal
& de la Riva, 2007), GAmera for WS-BPEL
(Domínguez-Jiménez, Estero-Botaro, García-
Domínguez & Medina-Bulo, 2009) or AjMutator
for AspectJ (Delamare, Baudry & Le Traon, 2009).
The existing mutation tools have been enumerated
by Jia and Harman (2011). Finally, new mutation
frameworks have been also developed lately:
Mutpy (Derezińska & Halas, 2014) for Phyton
3.x, Mutant (n.d.) for Ruby or PIT (Van Laeden,
2012) for Java and other JVM languages.

The attention to the object-oriented (OO)
paradigm has also risen and several papers and
tools have appeared, mainly around Java (Ahmed,
Zahoor & Younas, 2010). The first definition of
class operators for Java was accomplished by Kim,
Clark and McDermid (2000). As exposed in that
paper, the aforementioned traditional operators
can be applied to test OO programs, but those
operators that were developed in programming
environments away from this paradigm, do not
take into account some types of faults related to
features of this kind of programs, so operators
at the class level are definitely necessary. Muta-
tion tools including class mutation operators are
MuJava (Ma, Offutt & Kwon, 2005) for Java,
CREAM for C# (Derezińska & Szustek, 2009)
and MuCPP for C++ (Delgado-Pérez, Medina-
Bulo, Domínguez-Jiménez, García-Domínguez
& Palomo-Lozano, 2015).

All these languages, even though sharing
part of the syntax, need a particularized study to
define their set of mutation operators and tools
to generate the mutants. Mutation testing, usually
performed on programs at the unit level, has also
been applied at other levels in addition to the class
level. Hence, Delamaro, Maldonado and Mathur
(2001) studied the technique to be used for integra-
tion testing and Mateo, Usaola and Offutt (2012)
even to test a complete system. Mutation testing
has also been performed on technologies relating
the SOA architecture (Bozkurt, Harman & Has-
soun, 2013). Furthermore, apart from the code,
mutation testing has been used in other domains
like the specification of models, such as Finite

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/mutation-testing-applied-to-object-oriented-

languages/184443

Related Content

Research on Irregular Flight Recovery Strategy Under Different Flight Route Types With Big

Data Computing
Wei Fan, Yanfei Xu, Liang Lu, Honghai Zhang, Xuecheng Wu, Yan Jiangand Yingfeng Zhang (2024).

International Journal of Information Technologies and Systems Approach (pp. 1-20).

www.irma-international.org/article/research-on-irregular-flight-recovery-strategy-under-different-flight-route-types-with-

big-data-computing/349135

Securing Stored Biometric Template Using Cryptographic Algorithm
Manmohan Lakheraand Manmohan Singh Rauthan (2018). International Journal of Rough Sets and Data

Analysis (pp. 48-60).

www.irma-international.org/article/securing-stored-biometric-template-using-cryptographic-algorithm/214968

An Open Learning Format for Lifelong Learners' Empowerment
Sabrina Leone (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 1517-

1528).

www.irma-international.org/chapter/an-open-learning-format-for-lifelong-learners-empowerment/183866

Intelligent Biometric System Using Soft Computing Tools
Anupam Shukla, Ritu Tiwariand Chandra Prakash Rathore (2010). Breakthrough Discoveries in Information

Technology Research: Advancing Trends (pp. 191-207).

www.irma-international.org/chapter/intelligent-biometric-system-using-soft/39581

The Role of Robotic Telepresence in the Academic Library
Emy Nelson Decker (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 6648-

6655).

www.irma-international.org/chapter/the-role-of-robotic-telepresence-in-the-academic-library/113125

http://www.igi-global.com/chapter/mutation-testing-applied-to-object-oriented-languages/184443
http://www.igi-global.com/chapter/mutation-testing-applied-to-object-oriented-languages/184443
http://www.irma-international.org/article/research-on-irregular-flight-recovery-strategy-under-different-flight-route-types-with-big-data-computing/349135
http://www.irma-international.org/article/research-on-irregular-flight-recovery-strategy-under-different-flight-route-types-with-big-data-computing/349135
http://www.irma-international.org/article/securing-stored-biometric-template-using-cryptographic-algorithm/214968
http://www.irma-international.org/chapter/an-open-learning-format-for-lifelong-learners-empowerment/183866
http://www.irma-international.org/chapter/intelligent-biometric-system-using-soft/39581
http://www.irma-international.org/chapter/the-role-of-robotic-telepresence-in-the-academic-library/113125

