
1294

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 55

DOI: 10.4018/978-1-5225-3422-8.ch055

ABSTRACT

Software Product Line Methods (SPLMs) have been continuously gaining attention, especially in prac-
tice, for on one hand, they address diverse market needs while controlling costs by planned systematic
reuse in core assets development (domain engineering), and on another hand, they reduce products’
time-to-market, achieving a certain level of agility in product development (application engineering).
More cost-effective and agile as they are than traditional development methods for producing families of
similar products, SPLMs still seem to be heavy weight in nature. In SPLMs, significant up-front commit-
ments are involved in development of a flexible product platform, which will be modified into a range of
products sharing common features. Agile Methods (AMs) share similar goals with SPLMs, e.g., on rapidly
delivering high quality software that meets the changing needs of stakeholders. However, they appear
to differ significantly practices. The purpose of this work is to compare Agile and Software Product line
approaches from fundamental goals/principles, engineering, software quality assurance, sand project
management perspectives, etc. The results of the study can be used to determine the feasibility of tailor-
ing a software product line approach with Agile practices, resulting in a lighter-weight approach that
provides mass customization, reduced time-to-market, and improved customer satisfaction.

1. INTRODUCTION

The need to rapidly produce quality software and respond to changes in a flexible and quick manner has
driven the definition of new techniques, tools, and notations. These approaches share some common
goals: increasing the productivity of the development teams, reducing products’ time-to-market, reducing
development costs and improving customer satisfaction. Two such methods are agile methods (AMs),

Adding More Agility to Software
Product Line Methods:

A Feasibility Study on Its Customization
Using Agile Practices

Kun Tian
University of Wisconsin, USA

1295

Adding More Agility to Software Product Line Methods

including Scrum (Schwaber & Beedle, 2001), Extreme Programming (Beck, 1999), DSDM (DSDM
Consortium, 2006), and FDD (Palmer, 2003), and software product line methods (SPLMs), including
PLUSS (Eriksson, Börstler, & Borg, 2005), COVAMOF (Sinnema, Deelstra, Nijhuis, & Bosch, 2004)
and FOOM (Ajila, & Tierney, 2002)..

Software product line methods (SPLMs) are practices-based, or plan-driven, software development
approaches in which a set of software-intensive systems that share a common, managed set of features
are produced from a set of re- usable core assets in a prescribed way (Clements & Northrop, 2001)(Pohl,
Böckle, & Van Der Linden, 2005). A core asset is a software artifact that is re-used in the production of
customized products in a software product line (SPL). The assets include the requirements, architecture,
components, modeling and analysis, plans, etc. A SPL product can be quickly assembled from core assets,
and hence it achieves manufacturing efficiency. SPLMs support mass customization, which is “producing
goods and services to meet individual customer’s needs with near mass production efficiency” (Pine &
Davis, 1999). Mass customization in SPLMs is transparent: customers can obtain a unique product by
having their special requirements implemented; their common requirements are assessed before produc-
tion begins (A Framework for Software Product Line Practice, 2006)..

The purpose of this paper is to present a comparison of SPLM and AM methods to make a prelimi-
nary study on the possibility to introduce more agility into SPLM using Agile practices. The compari-
son criteria span fundamental goals and principles, engineering activities, software quality assurance
activities, and project management activities. This paper uses well established SPLMs and AMs in the
comparison. The comparison is expected to provide a useful foundation to the community, which can be
also extended to include additional results available in the literature and additional comparison criteria.

2. BACKGROUND

AMs are software processes that share the same values: individuals and interactions over processes and
tools, working software over comprehensive documentation, customer collaboration over contract ne-
gotiation and responding to changes over following a plan. The Agile Manifesto inspired 12 principles
for Agile process (Martin, 2002). Among these principles, the highest priority is to satisfy the customer
through early and continuous delivery of software. Agile methods use short iterations (sprints) that are
typically two to four weeks long. Satisfying the customer also involves recognizing the need to change
requirements, even late in development, to support the customer’s competitive advantage. The customers
are highly involved, as they receive frequent deliverables of working software and work together with
the technical people daily throughout the project. Working software is the primary measure of progress
on the project, as opposed to modeling artifacts, etc. The software is built by motivated individuals, who
have an environment and the support they need to get the job done. The self-organizing teams strive for
technical excellence (i.e., best requirements, best architecture, etc.) and simplicity (i.e., maximizing the
amount of work not done, such as extensive documentation for planning, requirements, architecture,
etc.). The project proceeds at a pace that is sustainable over the long run and includes regular reflections
on how to become more effective at implementing necessary changes.

Figure 1 presents an overview of an Agile engineering process. AMs minimize requirement engi-
neering and design modeling practices so that the team can begin working on code as soon as possible.

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/adding-more-agility-to-software-product-line-

methods/188257

Related Content

Timers and Associated Hardware
 (2017). Microcontroller System Design Using PIC18F Processors (pp. 181-199).

www.irma-international.org/chapter/timers-and-associated-hardware/190450

Continuous Curriculum Restructuring in a Graduate Software Engineering Program
Daniela Rosca, William Tepfenhart, Jiacun Wangand Allen Milewski (2009). Software Applications:

Concepts, Methodologies, Tools, and Applications (pp. 1998-2018).

www.irma-international.org/chapter/continuous-curriculum-restructuring-graduate-software/29491

What’s New? The Challenges of Emerging Information Technologies
Albert L. Ledererand John Benamati (2001). Strategies for Managing Computer Software Upgrades (pp.

11-13).

www.irma-international.org/chapter/new-challenges-emerging-information-technologies/98485

A Source Code Plagiarism Detecting Method Using Sequence Alignment with Abstract Syntax

Tree Elements
Hiroshi Kikuchi, Takaaki Goto, Mitsuo Wakatsukiand Tetsuro Nishino (2015). International Journal of

Software Innovation (pp. 41-56).

www.irma-international.org/article/a-source-code-plagiarism-detecting-method-using-sequence-alignment-with-abstract-

syntax-tree-elements/126615

Towards Tool-Support for Usable Secure Requirements Engineering with CAIRIS
Shamal Failyand Ivan Fléchais (2010). International Journal of Secure Software Engineering (pp. 56-70).

www.irma-international.org/article/towards-tool-support-usable-secure/46152

http://www.igi-global.com/chapter/adding-more-agility-to-software-product-line-methods/188257
http://www.igi-global.com/chapter/adding-more-agility-to-software-product-line-methods/188257
http://www.irma-international.org/chapter/timers-and-associated-hardware/190450
http://www.irma-international.org/chapter/continuous-curriculum-restructuring-graduate-software/29491
http://www.irma-international.org/chapter/new-challenges-emerging-information-technologies/98485
http://www.irma-international.org/article/a-source-code-plagiarism-detecting-method-using-sequence-alignment-with-abstract-syntax-tree-elements/126615
http://www.irma-international.org/article/a-source-code-plagiarism-detecting-method-using-sequence-alignment-with-abstract-syntax-tree-elements/126615
http://www.irma-international.org/article/towards-tool-support-usable-secure/46152

