
1

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-5225-3923-0.ch001

ABSTRACT

Software process development in software engineering does not seem to offer a solid view of what they
have in reality. Although many models have already been developed, recommended, or even used in the
industry, these proposals have still not been able to come to terms with what is available. This chapter
evaluates the benefits and limitations of some of the software development models while offering a
comparative analysis and data on their real usage. In particular, an attempt has been made to evalu-
ate the problems and strengths of a good variety of software process models and methodologies. Some
conclusions and lines of future research are presented.

1. INTRODUCTION

In our fast-paced society, judging from the recent technological advances within the past two decades
and the rate at which they become obsolete, one is tempted to ask, “How do they come up with such
ideas? What does it take to move from one stage to the next? How does the developer suddenly feel that

A Brief Overview of Software
Process Models:

Benefits, Limitations, and
Application in Practice

Sanjay Misra
Covenant University, Nigeria

Martha Omorodion
Federal University of Technology, Nigeria

Luis Fernández-Sanz
Universidad de Alcalá, Spain

Carmen Pages
Universidad de Alcalá, Spain

2

A Brief Overview of Software Process Models

the next best thing since sliced bread that customers want is a car with GPS (global positioning system)
and not just that, it talks to you as well?”

The basis of all these developments fits into a single word, “software.” Within the past two decades
this abstract concept has consumed a vital part of our society and on a regular basis. We all demand
improvements, systems that are more sophisticated than what we already have, features and services
that are almost insurmountable to the layman. Yet at the end of the day, we get them through systems
we often refer to as “computerized.”

Computerized systems range from laptops, air traffic control systems to even architecture and building
operations and trading. Achieving all these involve a lot of complex activities. Occasionally, problems
arise within our components that are software-based. These problems did not appear out of the blue. In
some cases, they were embedded in the systems during the development stages. This is due, in part, to
the fact that these systems and their applications are products of complex activities that are really very
difficult to develop, integrate and test.

The aim of this paper is to give insight into the various activities technically known as software
processes and how they are organized into different models to achieve the sophisticated software-based
products that we have today. Also, focus will be placed on highlighting the benefits and limitations of
each model and recommendations made for improvements on what is available to ease the problems
involved in the production of these software-based systems, while creating better outputs in the process.

Section two of this paper deals with the definition of terms and a list of other software development
processes that are not evaluated in this paper; section three shows the comparative analysis of the processes
that are evaluated. Section four outlines their benefits and limitations in tables. The recommendations
made are quite elementary but are useful for consideration when designing a process model.

1.1 Motivation for This Chapter

While teaching software engineering courses to undergraduates and masters students for the past six
years, one of the authors has observed that students are often confused about the different software pro-
cess models. Each book on software engineering explains these models in its own way. For example, in
the well-known book “Software Engineering” by (Sommerville, 2010), the author describes the models
under three categories: waterfall, iterative and CBSE. However, we do not feel comfortable consider-
ing CBSE as a model because it is essentially based on the development of components and very close
to object-oriented development. Furthermore, most of the available models are similar in many ways,
which make them difficult to discriminate from one another. For example, spiral, iterative/evolutionary
models (waterfall, incremental, spiral models, prototyping, Cleanroom, and object-oriented techniques)
show similarities in their processes. Additionally, several new software process models/methodologies
based on the basic models have been developed and applied in the industries in the last decade. There
is lack of clear-cut explanation and discrimination between these models in the literature except for
the basic ones. This contributes to insufficient knowledge in the learning community regarding these
models. To the best of our knowledge, no existing research paper available has provided the explanation
and discrimination of these models in a clear way. In this paper we evaluate and explain each available
model and present them to the learning community in a more comprehensible way to help discriminate
between them easily.

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/a-brief-overview-of-software-process-

models/192870

Related Content

Quantitative Reasoning About Dependability in Event-B : Probabilistic Model Checking Approach
Anton Tarasyuk, Elena Troubitsynaand Linas Laibinis (2012). Dependability and Computer Engineering:

Concepts for Software-Intensive Systems (pp. 459-472).

www.irma-international.org/chapter/quantitative-reasoning-dependability-event/55339

Partitioning of Complex Networks for Heterogeneous Computing
 (2018). Creativity in Load-Balance Schemes for Multi/Many-Core Heterogeneous Graph Computing:

Emerging Research and Opportunities (pp. 88-112).

www.irma-international.org/chapter/partitioning-of-complex-networks-for-heterogeneous-computing/195893

Viewpoint-Based Modeling: A Stakeholder-Centered Approach for Model-Driven Engineering
Klaus Fischer, Julian Krumeich, Dima Panfilenko, Marc Bornand Philippe Desfray (2018). Computer

Systems and Software Engineering: Concepts, Methodologies, Tools, and Applications (pp. 679-704).

www.irma-international.org/chapter/viewpoint-based-modeling/192898

Cultural Tourism O2O Business Model Innovation: A Case Study of CTrip
Chao Luand Sijing Liu (2020). Disruptive Technology: Concepts, Methodologies, Tools, and Applications

(pp. 406-423).

www.irma-international.org/chapter/cultural-tourism-o2o-business-model-innovation/231197

Secure by Design: Developing Secure Software Systems from the Ground Up
Haralambos Mouratidisand Miao Kang (2012). Computer Engineering: Concepts, Methodologies, Tools and

Applications (pp. 120-138).

www.irma-international.org/chapter/secure-design-developing-secure-software/62438

http://www.igi-global.com/chapter/a-brief-overview-of-software-process-models/192870
http://www.igi-global.com/chapter/a-brief-overview-of-software-process-models/192870
http://www.irma-international.org/chapter/quantitative-reasoning-dependability-event/55339
http://www.irma-international.org/chapter/partitioning-of-complex-networks-for-heterogeneous-computing/195893
http://www.irma-international.org/chapter/viewpoint-based-modeling/192898
http://www.irma-international.org/chapter/cultural-tourism-o2o-business-model-innovation/231197
http://www.irma-international.org/chapter/secure-design-developing-secure-software/62438

